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                                Chapter 1 

1.1 Introduction of Mathematical Biology 

Mathematical biology aims at the mathematical representation 

and modeling of biological processes, using techniques and 

tools of applied mathematics. It can be useful in both theoret-

ical and practical research. Describing systems in a quantita-

tive manner means their behavior can be better simulated, and 

hence properties can be predicted that might not be evident to 

the experimenter. This requires precise mathematical models 

[1].  

Mathematical biology is an interdisciplinary field that applies 

mathematical techniques, modeling, and computational meth-

ods to study and understand biological phenomena. It involves 

using mathematical models to describe and analyze various 

aspects of living organisms, from the cellular level to ecosys-

tems. Mathematical biologists aim to gain insights into com-

plex biological processes, predict outcomes, and test hypothe-

ses. 

This field encompasses a wide range of topics, including pop-

ulation dynamics, epidemiology, genetics, ecology, neurobi-

ology, and more. Mathematical models can help researchers 

to simulate biological systems, make predictions about their 

behavior, and guide experimental design. Overall, mathemat-

ical biology plays a crucial role in advancing our understand-

ing of biology and solving real-world problems related to 

healthcare, conservation, and more [2]. 
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Mathematical biology is expanding and developing rapidly as 

scientists in biological sciences turn from descriptive experi-

ments to more quantitative experiments. The diversity and 

complexity of living organisms means there are vastly more 

challenges for mathematicians to explain and predict biologi-

cal systems through modeling. 

The concept of mathematical Biology is not a new one. The 

Chinese, the ancient Egyptians, Indians, Babylonians and 

Greeks indulge in understanding and predicting the natural 

phenomena through their knowledge of mathematics. Mathe-

matical Biology consists of simplifying real world problems 

and representing them as mathematical problems, solving the 

model and interpreting these solutions in the language of real 

world [3]. 

 Formulation   

 

 

  

 Test Analysis 

 

 Interpretation 

 

        Fig. 1.1: Process of mathematical modeling [3]. 

 

Real- World Data Model 

Mathematical 

conclusion 

Predictions/expla-

nations 
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1.2 Introduction To Human Physiology 

Human physiology is the branch of biology that focuses on the 

study of how the various systems and organs in the human 

body function and interact to maintain life and health. It en-

compasses the study of processes such as digestion, respira-

tion, circulation, nervous system function, and more, to under-

stand how the body's internal mechanisms work to maintain 

homeostasis and support the overall well-being of an individ-

ual [4]. 

1. Homeostasis: Understanding how the body regulates and 

maintains a stable internal environment despite external 

changes. 

2. Circulatory System: Discussions about the heart, blood 

vessels, and blood circulation, including topics like blood 

pressure, heart rate, and cardiovascular diseases. 

3. Respiratory System: Exploring how the lungs and respir-

atory tract function, including the exchange of gases like 

oxygen and carbon dioxide. 

4. Nervous System: Discussions on brain function, nerve 

signaling, and sensory perception, as well as neurological 

disorders. 

5. Endocrine System: Examining the role of hormones in 

regulating various bodily functions and the impact of hor-

monal imbalances. 

6. Digestive System: Understanding how the body pro-

cesses food, absorbs nutrients, and eliminates waste, as 

well as digestive disorders. 
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7. Muscular and Skeletal Systems: Topics related to muscle 

function, bone structure, and movement, as well as con-

ditions like osteoporosis and muscle disorders. 

8. Reproductive System: Discussions on human reproduc-

tion, fertility, and reproductive health. 

9. Immune System: Exploring how the body defends 

against pathogens and the development of vaccines and 

immunotherapy. 

10. Metabolism: Discussions on energy metabolism, 

nutrition, and metabolic disorders like diabetes. 

These discussions are essential for advancing our understand-

ing of the human body and for developing treatments and in-

terventions to maintain and improve human health. Research-

ers and healthcare professionals continually explore these top-

ics to enhance our knowledge of human physiology and its 

impact on overall well-being [5]. 

 

 

 

 

 

 

 

 



9 
 

 

1.3 Physiology, Anatomy and Function of Heart 

1.3.1 Physiology of heart 

Heart as a Pump: The heart is a muscular organ that func-

tions as a pump, maintaining the circulation of blood to supply 

oxygen, nutrients, and remove waste products from body tis-

sues. 

The heart has four chambers: two atria (upper chambers) and 

two ventricles (lower chambers). The right atrium receives de-

oxygenated blood from the body, the left atrium receives oxy-

genated blood from the lungs, and the ventricles pump blood 

out of the heart. 

Blood flows through a series of valves and chambers in a one-

way circuit. Deoxygenated blood returns to the right atrium, is 

pumped into the right ventricle, sent to the lungs for oxygena-

tion, returns to the left atrium, and is then pumped into the left 

ventricle, which sends oxygenated blood to the rest of the 

body. Heart has valves (Muscular Flaps) which prevents back 

flow of blood. The atrioventricular (AV) valves (tricuspid and 

mitral/bicuspid) separate the atria from the ventricles, while 

the semilunar valves (pulmonary and aortic) separate the ven-

tricles from the arteries. 

Heart has its own Conductive system 

The sinoatrial (SA) node generates electrical impulses, initiat-

ing each heartbeat. These impulses travel through the atria, 

causing them to contract, and then pass through the atrioven-

tricular (AV) node, Delays signals from SA node to prevent 
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Over Stimulation of heart and helps it to maintain Its rhythm 

(72beats /min) called as Gatekeeper of Heart. 

The cardiac cycle consists of systole (contraction) and diastole 

(relaxation) phases. During systole, the heart contracts, push-

ing blood out of Heart into Blood vessels and then to Body 

parts. During diasystole Heart relaxes and receives Deoxygen-

ated blood into it and cycle goes on. The heart itself requires a 

constant supply of oxygenated blood. Coronary arteries de-

liver oxygen and nutrients to the heart muscle, ensuring it 

functions properly [5]. 

                    Fig 1.2: Human Heart [4]. 
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1.3.2 Anatomy of Heart 

Heart Is a Hollow Muscular Organ Situated In Thoracic Cav-

ity (Chest of Human Body) 

Enclosed In Pericardium (Covering Of Heart) 

Shape Pyramidal In Shaped  

Measurement 

Length 12cm 

 Width 9cm 

Weight 300g in Males  

And 250g in Females 

Placed - Obliquely In Chest Cavity  

So That 1/3 OF Heart Is To Right of Median Plan 

-2/3 of it is to Left of Median Plan  

Chambers-4 Chambers 

-Right Atrium & Right Ventricle 

- Left Atrium and Left Ventricle 

-On Surface, 

 Atria Separated From Ventricle by Atrioventricular Groove 

Ventricle from Each Other by Interventricular Grooves. 
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External Features - 

Apex 

Base 

- 4 Surface] 

4 Border-Right, Left, Upper and Inferior 

Apex-Conical 

-Formed By Left Ventricle 

Directed Downward and Forward and to the Left 

Base-Formed by 2 Atria, Mainly by Left Atrium 

→ Surface- 

1) Sternocostal-Formed by Right Atrium and Right Ventricle 

2) Diaphragmatic Surface-Formed by Left and Right Ventri-

cle 

3) Left Surface - Formed by Left Ventricle and Partly Left 

Atrium 

Directed Upward, Backward and to the Left 

4) Right Surface Formed by Atrium 
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Borders 

1) Right Border  

2) Left Border 

3) Inferior Border 

4) Upper Border [6]. 

 

                        Fig.1.3: Borders of Heart [4].  
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1.3.3 Functions of Heart 

Some important Terminologies 

Blood Vessels of Heart 

1) Arteries Blood Vessels which carry Blood away from Heart 

2) Veins which carry Blood towards Heart 

 With no exception  

3) Capillaries form the connection between the vessels that 

carry blood away from the heart (arteries) and the vessels that 

return blood to the heart (veins). 

Arteries mainly carry oxygenated Blood except Pulmonary 

Arteries 

Veins Carry Mainly Deoxygenated Blood except Pulmonary 

Vein 

2. Major veins 

Superior Vena cava Carrier Blood from upper half of Body to 

Heart (in Right Atrium) enters from above and Inferior Vena 

cava Carrier Blood from Lower half of Body to Heart (in Right 

Atrium) enters from below 

3. Major Artery. 

Aorta form arch of Aorta 

Gives Right Brachiocephalic Artery 

And Left Common Carotid and Left Sub clavian [4]. 
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Working of Heart 

The works of heart usually follow two pathways: 

Systematic Circulation through which heart pumps blood in 

blood vessels and Body organs receives oxygenated blood. 

Pulmonary circulation Deoxygenated is taken back to Heart 

then to lungs for oxygenation then back to Heart and the again 

to body cycle goes on. 

During this Blood flows twice into heart which we called dou-

ble Circulation which is the characteristic of Mammals (e.g. 

Humans, Monkey etc.) 

Below is the sequence of events Described: 

Pulmonary Circulation 

Deoxygenated blood returns to the right atrium from the body 

via two large veins, the superior and inferior vena cava. 

The right atrium contracts, pushing blood through the tricus-

pid valve into the right ventricle. When the right ventricle con-

tracts, it pushes this deoxygenated blood through the pulmo-

nary valve into the pulmonary artery. The pulmonary artery 

carries this blood to the lungs, where it receives oxygen and 

releases carbon dioxide during gas exchange. Oxygenated 

blood returns to the heart via the pulmonary veins, entering the 

left atrium. 

Systemic Circulation: Oxygenated blood in the left atrium is 

pumped into the left ventricle. 
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When the left ventricle contracts, it forces this oxygen-rich 

blood through the aortic valve into the aorta, the body's largest 

artery. The aorta branches into smaller arteries, which carry 

oxygenated blood to all parts of the body, including organs 

and tissues. In capillaries, oxygen and nutrients are exchanged 

for carbon dioxide and waste products. 

Deoxygenated blood is collected in veins and eventually re-

turns to the right atrium, starting the process again in pulmo-

nary circulation. 

In summary, pulmonary circulation moves deoxygenated 

blood to the lungs for oxygenation, while systemic circulation 

distributes oxygen-rich blood to the body's tissues. This con-

tinuous cycle ensures that every cell in the body receives the 

oxygen and nutrients it needs while eliminating waste prod-

ucts. 

This cycle last for about 0.8 seconds and is called as Cardiac 

Cycle 

Cardiac cycle have  

Atrial Systole= 0.1s 

Atrial Diasystole= 0.7 s 

Ventricular Systolic= 0.3s 

Ventricular Diasystole= 0.5s 

During this Blood distribution (Working of Heart) we hear 

usually 2 sounds of Heart 

S1 (Lub) 
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When AV Valve Close (Auruculo Ventricular Valves i.e. Bi-

cuspid and Tricuspid Valve Closes) 

S2 (Dub) 

SL valve closes (Semilunar Valves i.e. aortic and pulmonary) 

There are some other sounds S3 and S4 [7]. 

 

                   Fig1.4: Structure of Heart [4]. 
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1.4 Some Mathematical Techniques in Modeling Human 

Heart 

The study and understanding of the human heart involve vari-

ous techniques and technologies. Some of the key techniques 

used in studying the human heart include: 

Electrocardiography (ECG or EKG): ECG records the electri-

cal activity of the heart, providing information about heart 

rate, rhythm, and any abnormal electrical patterns. It is com-

monly used in diagnosing arrhythmias and other cardiac is-

sues. 

Echocardiography: This uses ultrasound waves to create im-

ages of the heart's structure and function. It can assess heart 

valves, chamber size, and blood flow, making it valuable in 

diagnosing conditions like heart valve diseases and heart fail-

ure. 

Cardiac Catheterization: Invasive procedure involving the in-

sertion of a catheter into blood vessels leading to the heart. It 

helps measure blood pressure, obtain coronary angiograms, 

and perform interventions like angioplasty or stent placement 

for coronary artery disease. 

Cardiac MRI (Magnetic Resonance Imaging): Provides de-

tailed images of the heart's structure and function, including 

the assessment of cardiac muscle and tissue. It is especially 

useful for diagnosing heart diseases and assessing heart func-

tion. 
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Cardiac CT (Computed Tomography): Uses X-rays to create 

cross-sectional images of the heart and blood vessels. It is val-

uable for diagnosing coronary artery disease and evaluating 

heart anatomy. 

Stress Testing: This includes exercise stress tests or pharma-

cological stress tests to assess how the heart responds to in-

creased workload. It helps diagnose coronary artery disease 

and evaluate heart function. 

Holter Monitor and Event Monitor: Portable devices used to 

record heart rhythms over an extended period. They are useful 

for diagnosing intermittent irregular heartbeat. 

Blood Tests: Measure various biomarkers in the blood, such 

as cardiac enzymes and troponin (type of protein found in the 

muscles of your heart) to assess heart health and diagnose con-

ditions like heart attacks. 

Nuclear Cardiology: Involves the use of radioactive tracers to 

assess blood flow to the heart muscle and detect areas with 

reduced blood supply, often used in stress testing. 

 Cardiac Electrophysiology Studies (EPS): Invasive proce-

dures that involve threading catheters into the heart to map its 

electrical system and diagnose and treat irregular heartbeat. 

These techniques play crucial roles in diagnosing and manag-

ing various heart-related conditions, allowing healthcare pro-

fessionals to provide appropriate treatment and care for pa-

tients with heart issues [8]. 
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                               Chapter 2 

2.1 Surrey Work and Paper review  

Numerical simulation of physiological and pathological 

changes in the human cardiovascular system had become an 

active research area in the past decades. Various models had 

been proposed to study the dynamics of the cardiovascular 

system (Snyder and Rideout, 1969, Heldt et al., 2002, Liang 

et al., 2009, Wang et al., 2013)[12]. Among these studies, 

lumped parameter models were usually used to study the 

global responses of the whole circulation system (Snyder and 

Rideout, 1969, Melchior et al., 1992, Ursino, 1998, Pennati et 

al., 1997, Sun et al., 1997, Heldt et al., 2002, Ellwein et al., 

2008)[13]. Mathematical models of the heart played critical 

roles in investigating the global responses of human cardio-

vascular system. Due to their important roles in pumping 

blood into the circulation system, ventricular models had been 

paid more attention than atrial models in most modeling stud-

ies (Suga et al., 1973, Melchior et al., 1992, Drzewiecki et al., 

1996, Pennati et al., 1997, Heldt et al., 2002, Ottesen and Dan-

ielsen, 2003)[13]. Models of the whole heart were also devel-

oped and used in some studies, while only a few of them in-

cluded arbitrary heart rate (Sun et al., 1997, Ursino, 1998, 

Vollkron et al., 2002, Liang et al., 2009, Muller 

and Toro, 2014)[12]. 

There were mainly three ways to include arbitrary heart rate. 

Heldt et al. (2002) used ‘Bazett formula’ to determine the sys-

tolic time interval, which linked the systolic time interval of 
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the present beat to duration of cardiac cycle that preceded it, 

meanwhile the length of the present cardiac cycle was deter-

mined by means of an integral pulse frequency modulation 

model of the sinoatrial node. Ottesen and Danielsen (2003) 

presented a different paradigm for modeling ventricular con-

traction with heart rate changes through using a polynomial 

expression of the activity function, which contained more fea-

tures and would generate results in good agreement with ex-

perimental data from Regen et al. (1993) and Mulier (1994). 

Liang and Liu (2006) used a constant time parameter to scale 

the value of systolic elastance when the cardiac cycle changes. 

Ottesen’s paradigm was chosen in this study for building the 

whole heart model with consideration of contractility varying 

with heart rate changes. 

Modeling atrial contraction with heart rate changes was also 

valuable for analyzing the global responses of human cardio-

vascular system with closed loop regulation, because atrial 

contraction played an increasingly significant role in ventric-

ular filling as heart rate increases Mohrman and Heller 

(2010)[14]. 

1. The Lumped Parametric Model was proposed by Synder 

and Rideout in the year 1969. The purpose of this model 

is to develop a mathematical model of Human Cardio-

vascular system. This model was divided into three parts: 

Systemic Circulation, Pulmonary Circulation and the 

Heart. The main concept of this model is describing the 

system based on the vessel diameters and simulating 

mathematical equations with active electrical elements. 
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It is useful to understand the anatomy of human cardio-

vascular system and related syndromes. This model 

deals with vessels pressure and blood flow at certain 

time. 

A lumped parameter model in the cardiovascular system 

is a simplest mathematical representation that considers 

the system as a collection of interconnected compart-

ments or "lumps" rather than modeling every individual 

component in detail. In the context of the cardiovascular 

system, these compartments typically represent different 

parts of the circulatory system, such as the heart, arteries, 

veins, and organs. Here are some advantages and disad-

vantages of using a lumped parameter model.  

Advantages  

1. Simplicity: Lumped parameter models are relatively 

simple and require fewer equations and parameters com-

pared to detailed, distributed models.  

2. Computationally Efficient: Due to their simplicity, 

lumped parameter models are computationally efficient 

and can be solved quickly, making them suitable for real-

time simulations and clinical applications. 

3.  Parameter Estimation: Lumped parameter models can 

be calibrated using clinical data, allowing researchers to es-

timate 44 model parameters and customize the model for 

individual patients or specific scenarios.  

 

 



23 
 

 

Disadvantages 

1. Lack of Spatial Detail: Lumped parameter models lack 

spatial detail because they treat entire compartments as sin-

gle entities. 

2. Oversimplification: Due to their simplifications, these 

models may not capture all the intricate physiological pro-

cesses and phenomena that occur in the cardiovascular sys-

tem. 

3. Limited usefulness for research: While lumped parame-

ter models are useful for certain clinical applications and 

educational purposes, they may not be suitable for in depth 

research into highly detailed and specific cardiovascular 

phenomena [11]. 

2. A Mathematical model of human heart including the ef-

fects of heart contractility varying with heart rate 

changes, model was proposed by J. T. Ottesen and M. 

Densielsen in the year 2003. The pumping heart is de-

scribed by a new mathematical approach which consid-

ers the heart as a pressure source depending on time, vol-

ume and flow. This new approach allows a separation 

between isovolumic and ejecting heart properties. The 

computed results cover most of the features of the human 

ventricle during normal and altered vascular conditions. 

It is shown that the time-varying elastance concept is dis-

qualified as an independent description of the heart; it 

follows from isovolumic heart properties and an ejection 
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effect which consists of positive and negative effects of 

ventricular blood ejection [12]. 

 

3. The 0D Resistive-Compliant model was proposed by 

Ambrosi et al., in the year 2012[9]. The 0D Resistive-

Compliant model is a simplified mathematical represen-

tation used in the field of cardiovascular modeling to de-

scribe the behavior of blood vessels and the flow of 

blood within them. It is often used in lumped parameter 

models of the cardiovascular system. In order to under-

stand the parameters LCR (inductance, capacitance and 

resistance) in this model, it will be analyzed below dis-

cussed. This approach is usually called capacitance-re-

sistance model (CRM) [9]. 

 

4. A global multiscale mathematical model for the human 

circulation with emphasis on the venous system model 

was proposed by Lucas O Muller and Toro in the year 

2014. They present a global, closed loop, multiscale 

mathematical model for the Human circulation including 

the arterial system, the venous system, the Heart, the pul-

monary circulation and the microcirculation. A distinc-

tive feature of their model is the detailed description of 

the various systems particularly for intracranial and ex-

tracranial veins. Medium to large vessels are described 

by 1-Dimensional hyperbolic system while the rest of the 

components are described by 0-Dimensional model rep-

resented by differential-algebraic equations [10]. 
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2.2 Mathematical Modeling of the cardiovascular 

system 

2.2.1. The 0D Resistive-Compliant models: 

Before get to the full explanation of the 0D model, some ideas 

must be discussed in advance. To make analogy with an elec-

tric system is not exclusive of cardiovascular models. That 

analogy is vastly used in many fields (FIRESTONE, 1933; 

HOLANDA, 2015) in order to simplify the system. This ap-

proach is usually called capacitance-resistance model (CRM).  

In order to understand the parameters RLC (resistance, induct-

ance and capacitance) of this model, it will be analyzed the 

circuit in Figure (2.1) that has a font, a resistance and a switch. 

When the switch is open, no current passes through the re-

sistance, whereas when it is closed, there is a current in the 

system. Now, if this switch opens and closes the circuit regu-

larly, that current would be on and off with time. But if a ca-

pacitor is added, like in Figure (2.2), when the switch is closed 

the capacitor charges and when the switch is open, the capac-

itor discharges maintaining the resistor under a current. Now, 

if once again the switch goes on and off regularly, the presence 

of the capacitor will ensure a non-null current until the next 

cycle (AMBROSI et al., 2012; BLANCO and FEIJÓO, 2011). 

In the cardiovascular model, when the switch is on, is the 

equivalent to systole; and when it is off, diastole. The electri-

cal resistance is analogue to the vessel resistance that opposes 

to the flow. Finally, as the vessels are elastic, when the high 

pressure flow comes in, it dilates and stores potential elastic 
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energy, releasing it back to the fluid as the pressure diminishes 

in order to maintain the fluid circulating. That is called com-

pliant model, thus the name of this model based on this anal-

ogy: Resistive-Compliant model (AMBROSI et al., 2012; 

BLANCO and FEIJÓO, 2011)[9]. 

 

 

  

 

 

                         Fig.2.1: Resistive circuit with switch [9]. 

 

 

 

 

               Fig.2.2: Capacitive-resistive circuit with switch [9]. 
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 Capacitor Resistor circuit Cardiovascular system 

Driving force Voltage difference, ∆E Pressure difference, ∆P 

Flow equation Ohm’s law, I =   ∆E/R Q = ∆P/R 

Resistance, R f1(material property, Ac, L) f2(tissue property, Ac, L) 

Capacitance, c C = q/∆E C = ∆V/∆P 

              Table 2.1: CRM’s underlying analogies. 

The study from WESTERHOF et al. (1969) is among the firsts 

to present the electric-circuit analogy applied to the cardiovas-

cular system, and to use the CRM to an arterial tree. They con-

sidered Newton’s law and continuity equations to model the 

flow in any length of the artery, as shown in Equations (2.1) 

and (2.2), respectively. 

                    −∆𝑃 = 𝐿
𝑑𝑄

𝑑𝑡
+ 𝑅𝑇                             (2.1) 

                     
𝑑𝑉

𝑑𝑇
= 𝐶

𝑑𝑃

𝑑𝑇
                    (2.2) 

where 

Resistance, 𝑅 =  8𝜋µ/𝐴2 

Capacitance, 𝐶 =  𝐴/𝐸 (ℎ/2𝑅)  

Inductance, 𝐿 =  𝜌/𝐴  

And:  

µ is the blood viscosity;  

ρ is the blood density;  

E is the Young’s modulus of the blood vessel;  
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A is a cross-sectional area of the segment of artery;  

h is the wall thickness of the vessel. 

WANG et al. (1989) also applied this analogy to their model 

to simulate disease conditions (the effect of stenosis in a few 

cases), using a coefficient α to correct the three inicial param-

eters (R, C and L) in order to represent a stenosed artery. The 

study results are representative, even in disease cases. It is im-

portant to point out that their study only approached the coro-

nary arteries, and the RCL parameters where dependent of the 

length of the segment of artery (after integration) that difficult 

its estimation. Although further developments were made, the 

capacitance-resistance model is since the most used macro-

scopic model in the field of cardiovascular systems [9]. 

 

Here are some advantages and disadvantages of this model: 

Advantages: 

1. Simplicity: The 0D Resistive-Compliant model is rela-

tively simple and computationally efficient. It represents 

blood vessels as simple resistive and compliant elements, 

making it easier to work with compared to more complex 

models. 

2. Conceptual Understanding: This model provides a concep-

tual understanding of how blood flow and pressure interact 

within the cardiovascular system. It can help researchers 

and clinicians gain insights into the fundamental dynamics 

of blood circulation. 
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3. Parameter Tuning: The model allows for the tuning of re-

sistive and compliant parameters to match observed clini-

cal data. This flexibility makes it useful for customizing the 

model to specific patients or scenarios. 

4. Real-Time Applications: Due to its simplicity and effi-

ciency, the 0D Resistive-Compliant model is suitable for 

real-time simulations, making it valuable for clinical appli-

cations, such as patient monitoring and decision support. 

Disadvantages: 

1. Lack of Spatial Detail: Like other lumped parameter a 

model, the 0D Resistive-Compliant model lacks spatial 

detail. It treats entire vascular segments as single entities, 

which may not capture complex spatial variations accu-

rately. 

2. Limited Precision: The model's simplifications may lead 

to limited precision in certain applications, especially 

when high spatial and temporal resolution is required. 

3. Assumptions Required: To use this model, certain as-

sumptions about the relationships between resistance, 

compliance, and blood flow need to be made. These as-

sumptions may not always accurately reflect the real 

physiological processes. 

4. Limited Applicability: The 0D Resistive-Compliant 

model may not be suitable for in-depth research into 

highly detailed and specific cardiovascular phenomena, 

as it simplifies the complex interactions occurring in the 

vascular system [9]. 
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2.2.2 Modeling Blood Flow In Human Heart: 

We know that blood is carried from heart to various parts of 

the body and eventually returned to heart. In fact, blood is car-

ried through system of elastic tubes-the arteries, capillaries 

and veins. The blood returns to the heart without actually leav-

ing the system. This process is known as circulation of blood 

or flow of blood as discussed above. 

We also know that proper flow of blood is essential to transmit 

oxygen and other nutrients to various parts of the body in hu-

man beings as well as in all other animals. Any constriction in 

the blood vessel or any change in the characteristics of blood 

vessels can change the flow and are damages ranging from mi-

nor discomfort to death, in worst case. Therefore a better un-

derstanding of the physiology of the system is essential. Math-

ematical modeling of the system is aimed at this: 

As a first step in modeling, we shall first identify the essential 

characteristics of blood flow. 

We list them below:  

I) Blood is a non-homogeneous fluid  

II) Blood vessels are elastic, they branch repeatedly 

III) Blood flow is unsteady or pulsatile 

IV) Blood flow is generally laminar except for flow near 

heart 

 

 

 



31 
 

 

(a) Viscosity 

Suppose a force is applied to a portion of a mass of a fluid it 

will begin to flow but if the force is removed the movement 

will be brought to rest. On the other hand, if a similar portion 

of a fluid is kept in moving, the movement will be transferred 

to the rest of the fluid. This property is analogous to that of 

friction between solid bodies. 

Now we shall explain the concept of Viscosity of a fluid based 

on the following simple experiment. Consider the motion of a 

fluid between two long parallel plates one of which is rest and 

the other one is moving with a constant velocity U parallel to 

itself as shown in Figure-2.3 

 

 U 

 

   

h                                                                     y                               u (y) 

 

  

           Fig.2.3: Motion of fluid between parallel plates [3]. 

Let the distance between the plates be h and the fluid velocity 

be u. Assume that the fluid pressure is constant throughout the 

fluid. Due to cohesive nature of fluid it adheres to the plates. 

The fluid velocity at the lower plate is zero and that at upper 
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plate is U. This is because the upper plate is moving and the 

lower plate is at rest. So we get 

𝑢 =  0, when 𝑦 =  0 

𝑢 =  𝑈, when 𝑦 =  ℎ 

Experimentally, it is observed that the fluid velocity distribu-

tion is linear and as such it is given by 

                                  𝑢(𝑦) =
𝑈

ℎ
𝑦                                         (2.3)                                                             

Where y is the direction at right angles to the flow. In order to 

support the motion it is necessary to apply a tangential force 

to the upper plate. Experimentally it is observed that this force, 

taken per unit area, is proportional to the velocity U of the up-

per plate and inversely to the distance h. If τ denotes the force, 

then τ is directly proportional to U/h. 

This is denoted by 

                               τ ∝  
𝑈

ℎ
                                              (2.4)                                                                  

Many researchers have studied this property; the first theoret-

ical consideration was made by Newton in which he consid-

ered the motion imparted to a large volume of fluid by the ro-

tation of a long cylinder suspended in it. The hypothesis on 

which he based his derivation was that the resistance which 

arises from the defect of slipperiness of the parts of the liquid, 

other things being equal is proportional to the velocity with 

which the parts of the liquid are separated from one another. 

'Defect of slipperiness' was the term used to describe what we 

now call viscosity. This hypothesis emphasizes immediately 
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that in a fluid moving relative to a surface there are laminae 

(plate or layer) slipping on one another and so moving at dif-

ferent velocities. There is thus a velocity gradient i.e., du/dy 

in this case in a direction perpendicular to the surface. This 

gradient is usually called the rate of shear. In modern terms, 

the velocity gradient is written as du/dy, where y is the dis-

tance from the axis. The resistance or force is denoted as τ. 

Then by Newton's hypothesis 

                                           τ = µ
𝑑𝑢

𝑑𝑦
                                      (2.5)                                                                    

Where µ is a constant. Note that when we differentiate the ex-

pression given in equation (2.3) and substitute for du/dy in 

(2.1), we get the expression given in (2.4). µ in (2.5) is called 

the proportionality constant which gives the measure of the 

viscosity of the fluid; µ is also called the coefficient of viscos-

ity. 

(b) Poiseuille's Law: 

Poiseuille's law is the relation between flow rate and pressure 

gradient-for fluid flow in a rigid cylindrical tube under a pres-

sure gradients. (Note that the pressure gradient is the pressure 

drop per unit length
𝑑𝑝

𝑑𝑧
 = 𝑙𝑖𝑚

𝛥𝑧→0

𝛥𝑝

𝛥𝑧
) 

In order that we can understand the flow properties of biolog-

ical fluids such as blood which my exhibit non-Newtonian 

properties it is first necessary to discuss the behavior of simple 

or Newtonian fluids. 
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               Fig. 2.4: Flow properties of simple fluid [3]. 

Let us look at the flow properties of a simple liquid like water 

in a very long horizontal pipe. Imagine that the pipe is circular 

in cross-section and d units in diameter as shown in Figure-

2.4. 

Its entrance and exit are connected to large reservoirs so that 

the pressure drops between the ends of the tube may be main-

tained constant and a steady flow of water through the pipe is 

achieved. Small side hole, or lateral, pressure tappings are 

made in the pipe at frequent intervals along its length and 

these tappings are connected to a series of manometers. It is 

thus possible to measure the pressure drop per unit length or 

pressure gradient along the pipe. 

If the pressure at the inlet to the pipe is p₁ and that at the outlet 

P0, then we shall observe that, as P1-P0 (or ∆P) is increased by 

raising the level in the upstream reservoir, so is the flow rate 

V through the pipe. 

It was Poiseuille in 1840, who as a first step towards under-

standing the mechanics of the circulation, published a quanti-

tative study of the flow properties in a pipe very remote from 

the entrance, and flow conditions in this region are now named 
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after him. In addition to varying the flow rate and tube size, 

Poiseuille also studied the effect of viscosity on the flow con-

ditions. Here we found that as viscosity was increased so was 

the pressure gradient necessary to maintain a given flow-rate. 

Now to derive Poiseuille's formula we make use of Newton's 

second law of motion, which says that 

𝑀𝑎𝑠𝑠 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 

𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 + 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓𝑜𝑟𝑐𝑒 + 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒            (2.6)        

Let us consider the fluid flow through a circular tube with 

length L and diameter D = 2R, which is small compared with 

the length. We assume that the rate of flow is constant i.e., 

flow is steady. We also assume that the fluid velocity every-

where inside the tube is laminar/stream lined. As we know for 

a laminar flow, the velocity is purely in the direction parallel 

to the axis of the cylinder. The fluid velocity at the inner sur-

face is zero and it reaches maximum value on the axis (here 

axis means axis of the cylinder.) 

  

             Fig.2.5: Fluid flow through cylindrical tube [3]. 



36 
 

 

We can consider the flow of fluid as the simultaneous move-

ment of several layers, which in the form of hollow cylinders 

one inside the other. If we assume that y is the radius of one 

of these cylinders, then y varies from 0 to R, 

 i.e., 0<y<R as shown in Figure-2.5 

If we consider the fluid flow to be due to pressure differences 

at the ends of the tube from the higher to the lower one then 

the only force opposing this flow is viscous resistance. We 

know that this force is µ (
𝑑𝑢

𝑑𝑦
), and we find that the fluid parti-

cles are accelerated by the pressure difference and retarded by 

viscous resistance. If we look at equation (2.5), then we will 

find that the only forces present are pressure gradient force and 

viscous force. This is because, since the flow is a steady flow 

in a straight tube, the fluid is not subjected to any acceleration 

(i.e., when the flow is study, things do not change with respect 

to time). Therefore, LHS of equation (2.6) is zero also, since 

we are considering the flow in horizontal pipes, gravitational 

forces are not relevant and therefore the body force term also 

vanishes. Thus, equation (2.5) reduces to Pressure gradient 

force = - Viscous force. Now if 𝐹𝑣𝑖𝑠𝑐 denote the viscous force 

and 𝐹(𝑃) denote the pressure difference, then we have 

                              𝐹(𝑃) = −𝐹𝑣𝑖𝑠𝑐                                     (2.7)  

(The negative sign indicates one force accelerates the motion, 

the other retards.) 

Now we will calculate the LHS and RHS of equation (2.7), we 

first consider the RHS of on (2.7). Here note that each flow is 
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in the form of cylindrical layer of length L and radius y, y var-

ying from 0 to R. The viscous force acts on the surface and it 

is given by the slowing formula: 

𝐹𝑣𝑖𝑠𝑐 = 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 × 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 ×

𝑡ℎ𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡                                                       (2.8)  

We have denoted the viscosity as µ and we know that the ve-

locity gradient is given by du/dy. Therefore, we can write 

equation (2.8) as 

                    𝐹𝑣𝑖𝑠𝑐 = 2𝜋𝑦𝐿 (𝜇
𝑑𝑢

𝑑𝑦
)                                     (2.9)                                                            

Next we shall find the pressure difference. 

Note that the force exerted by the pressure at an end of the 

cylinder is pressure at that end multiplied by the cross sec-

tional area. Now if P1 and P₂ respectively denote the pressures 

at her end of length L of the cylinder considered, then the re-

quired pressure difference is 

                      𝐹(𝑃) =  𝜋𝑦2(𝑃1 − 𝑃2)                              (2.10)                                                        

Substituting for 𝐹(𝑃) and 𝐹𝑣𝑖𝑠𝑐 in equation (2.7), we get  

𝜋𝑦2(𝑃1 − 𝑃2) = −2𝜋𝑦𝐿 (𝜇
𝑑𝑢

𝑑𝑦
) 

𝑦(𝑃1 − 𝑃2) = −2𝐿𝜇
𝑑𝑢

𝑑𝑦
 

This gives the velocity gradient  
𝑑𝑢

𝑑𝑦
  as 

                           

𝑑𝑢

𝑑𝑦
= −𝑦 (

𝑃1−𝑃2

2𝐿𝜇
)                              (2.11)
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the negative sign here implies u decreases when y increases. 

Also, note P₁> P₂). 

Now substituting this value of the velocity gradient in equa-

tion (2.5), we get the shear stress 

τ = µ
𝑑𝑢

𝑑𝑦
 

                = 𝜇 × (−𝑦) × (
𝑃1 − 𝑃2

2𝐿𝜇
) 

                                    = −𝑦 (
𝑃1 − 𝑃2

2𝐿𝜇
)                        (2.12) 

                         

Now if we consider the wall of the tube, then the radius y of 

the wall is R, therefore from equation (2.12) we get  

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑢𝑏𝑒 = −𝑅
(𝑃1−𝑃2)

2𝐿
            (2.13)

           
 

Thus, we have derived the equation describing the flow of 

fluid in a thin tube of length L, with pressures P1 and P2 at the 

ends. 

Now we have to solve equation (2.9) to get the velocity u. Let 

us consider equation (2.9), since this equation is a first order 

linear ordinary differential equation. To find the solution we 

integrate on both sides of equation (2.9) and we velocity as
                                                       

 

                   𝑢(𝑦) = −
(𝑃1 − 𝑃2)

4𝜇𝐿
𝑦2 ± 𝐶                   (2.14) 
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Where C is the constant of integration which is to be evalu-

ated. To evaluate C, it is necessary to prescribe the boundary 

conditions. Here, we make use of the assumption made by 

New that the fluid in contact with the wall is at rest, 

u = 0, when y = R 

i.e., substituting the condition in equation (2.14) we get 

                                𝐶 = −
(𝑃1−𝑃2)

4𝜇𝐿
𝑅2 

So that equation (1.14) reduces to 

                       𝑢(𝑦) = −𝑦2 (𝑃1−𝑃2)

4𝜇𝐿
+ 𝑅2 (𝑃1−𝑃2)

4𝜇𝐿
 

                                = (𝑅2 − 𝑦2)
(𝑃1−𝑃2)

4𝜇𝐿
                      (2.15)

                     
 

Where u is the velocity component parallel to the axis, R is the 

radius of the cylinder, L is the length of the tube, µ is the vis-

cosity of the fluid and P1-P₂, the pressure drop. 

Therefore, equation (2.15) describes the velocity of the fluid 

in a steady laminar flow. Now, let us see what equation (2.15) 

represents geometrically. Since equation (2.15) equation of a 

parabola where u = 0 when y = R and u is maximum when y 

= 0 i.e. at the axis of the tube as shown in Figure-2.6. 

Our boundary conditions say that the velocity is zero at the 

wall. If the principle of conservation of mass is to hold well, 

the same amount of fluid should come out of every cross-sec-

tion. The loss of velocity at the wall has to be compensated by 
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maximum velocity at the centre.

 

 Fig. 1.10: The parabola shows the velocity profile in a steady lami-

nar flow [3]. 

Thus, we find that the velocity distribution in a tube, with 

given pressure gradient is parabolic. 

So, we have got an equation, which gives velocity distribution 

in a tube. Let us now find the volume of fluid, flowing through 

a section of the tube per unit time. Here we shall see how we 

will use equation (2.15) along its axis. That is, we have to de-

termine the volume of the solid of revolution of parabola. 

The required volume V of parabola of revolution 

Then 

                        V = ∫ ∫ 𝑢(𝑦)
𝑅

0
𝑦𝑑𝑦𝑑𝜃

2𝜋

0
 

Now substituting for u in the above integral, we get  

                        V = 
2𝜋(𝑃1−𝑃2)

4𝐿𝜇
∫ (𝑅2 − 𝑦2)

𝑅

0
𝑦𝑑𝑦 

                            =
(𝑃1−𝑃2)𝜋𝑅4

8𝐿𝜇
                                      (2.16)
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Equation (2.16) is called Poiseuille's law and it says that the 

volume is proportional to the first power of the pressure drop 

per unit length, (𝑃1 − 𝑃₂)/𝐿 and to the fourth power of the 

radius of the pipe 𝑅4 and it is inversely proportional to the 

length of the tube as well as the viscosity of the fluid. This 

equation is a general solution for any problem of fluid flow 

trough cylindrical pipes, provided that the fluid flow satisfies 

all the assumptions, which are assumed in obtaining equation 

(2.16). The assumptions made are: 

 1) The fluid is homogeneous and its viscosity is the same at 

all rates of shear. 

2) The fluid does not slip at the wall of the tube. This was the 

assumption that 𝑢 =  0 when 𝑦 = 𝑅 which was made in eval-

uating the constant of integration in equation (2.11). 

3) The flow is laminar, i.e. the fluid is flowing parallel to the 

axis of inner surface wall of the tube.  

4) The rate of flow is steady. 

5) The tube is along with length much greater than the diame-

ter of the tube. 

Note: what are the units of quantities given in Poiseuille’s 

equations (2.16) 

𝑅 and 𝐿 are in cm, 𝑃 =  𝑑𝑦𝑛𝑒𝑠/𝑐𝑚2 and µ is a Poise. 
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In the previous section we have used Poiseuille's law, which 

gives a relation between the rate of flow and the pressure dif-

ference existing while a fluid flows in a rigid  tube of circular 

cross section. 

Formulation: In above we have used Poiseuille's law, which 

gives a relation between the rate of flow and the pressure dif-

ference existing while a fluid flows in a rigid tube of circular 

cross section. 

Let us now formulate a simple mathematical model for blood 

flow in arteries. Since the real situation is quite complex and 

including all the essential characteristics will make the model 

very complicated, let us make certain assumptions: 

I) Blood is a homogeneous fluid 

II) The flow is steady and laminar 

III) The tube is rigid, long and straight 

With these assumptions, the formulation leads to the steady 

flow of blood in a long rigid blood vessel for which 

Poiseuille's law is applicable. Thus, the velocity of blood in 

configuration corresponding to this simple model is 

                  u(y)=
(𝑃1−𝑃2)

4𝜇𝐿
(𝑅2 − 𝑦2);  0 ≤  y ≤  R        (2.17)

                                        
 

And the rate of flow is 

                   𝑉 =
𝜋𝑅4(𝑃1−𝑃2)

8𝜇𝐿
                                              (2.18)

                                          
 

We can calculate the shear stress here by using the formula 
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                    τ = 𝜇
𝑑𝑢

𝑑𝑦
=  -

𝑦(𝑃1-P2)

2L
                                  (2.19)

                                                       
 

Correspondingly the shear stress on the wall i.e. 𝑦 =  𝑅 is  

                      τ =
−𝑅(𝑃1−𝑃2)

2𝐿   

Case Study 1: For any given flow of fluid due to pressure gradient in 

a tube of radius 𝑅 and length 𝐿,we have evaluated the bounds for 

velocity distribution by the formula  

                  u(y) =
(𝑃1−𝑃2)

4𝜇𝐿
(𝑅2 − 𝑦2);  0 ≤  y ≤  R  

        Where µ is the viscosity of the fluid and 𝑃 =  𝑃1 − 𝑃2 is fluid 

pressure at the ends of the tube 

u(y) =
𝑃

4𝜇𝐿
(𝑅2 − 𝑦2), 𝑤ℎ𝑒𝑟𝑒 𝑃 = 𝑃1 − 𝑃2 

At 𝑦 = 0 , 𝑢(0) =
𝑃𝑅2

4𝜇𝐿
  𝑎𝑛𝑑  𝑎𝑡 𝑦 = 𝑅, 𝑢(𝑅) = 0 

Therefore, 

0 ≤ 𝑢(𝑦) ≤
𝑃𝑅2

4𝜇𝐿
 

Case study 2: For a blood vessel of constant radius 𝑅, length 

𝐿 and driving force 𝑃 = 𝑃1 − 𝑃2 . Show that the average ve-

locity of flow is equal to half the maximum velocity and re-

sistance  

i.e.,  
(𝑃1−𝑃2)

𝑉
 is proportional to 

𝐿

𝑅4 . 

Solution:  We have,  
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u(y) =
(𝑃1 − 𝑃2)

4𝜇𝐿
(𝑅2 − 𝑦2) 

                        =
𝑃

4𝜇𝐿
(𝑅2 − 𝑦2),0 ≤  y ≤  R  

                                     𝑤ℎ𝑒𝑟𝑒 𝑃 = 𝑃1 − 𝑃2 

Also we know that 

                               V =
𝜋𝑅4

8𝜇𝐿
(𝑃1 − 𝑃2) 

Average velocity of the blood in a vessel  

                                 = 
𝑉

𝜋𝑅2 =   
𝑅2

8𝜋𝐿
𝑃 = 𝐾

𝑅2

2
                   (2.20)  

Also, maximum velocity  

             𝑢𝑚 = 𝑢|𝑦=0 =
𝑃1 − 𝑃2

4𝜇𝐿
𝑅2 = 𝐾𝑅2                    (2.21) 

From eq. (2.20) and (2.21), we get  

Average velocity of the blood in a vessel =
1

2
 max. velocity 

Resistance to the flow = 
𝑃1−𝑃2

𝑉
 

8𝜇𝐿

𝜋𝑅4 = 𝐶
𝐿

𝑅4 ,   𝑤ℎ𝑒𝑟𝑒 𝐶 =  
8𝜇

𝜋
 is constant  

This shows that the resistance to the flow is directly propor-

tional to 
𝐿

𝑅4. 
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2.3 Conclusion 

The mathematical model of the human heart proposed in the 

dissertation can provide valuable insights into the complex dy-

namics of this vital organ. Through the simulations, we have 

been able to better understand the behavior of the heart's 

chambers, valves, and the flow of blood within them. The 

model has highlighted the importance of factors such as heart 

rate, contractility, and valve function in maintaining a healthy 

cardiac cycle. Furthermore, it will demonstrate the potential 

utility for predicting and analyzing various cardiac conditions 

and interventions, paving the way for future research and clin-

ical applications (Pacemaker of Heart) in cardiology. Overall, 

the work underscores the significance of mathematical model-

ing in advancing the understanding of the human heart and its 

role in cardiovascular health. 
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