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Abstract
This paper considers the well known Bernstein and Turán-type inequalities that relate the
uniform norm of a polynomial to that of its derivative on the unit circle in the plane. Here,
we establish some new inequalities that relate the uniform norm of the polar derivative and
the polynomial, in case when the zeros are inside or outside some closed disk. The obtained
results produce various inequalities that are sharper than the previous ones known in very
rich literature on this subject.
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1 Introduction

Let P(z) := ∑n
j=0 c j z

j be an algebraic polynomial of degree n in the complex plane and
P ′(z) is its derivative. The study of extremal problems of functions of complex variables and
the results where some approaches to obtaining the polynomial inequalities are developed
on using various methods of the geometric function theory is a fertile area in analysis for
researchers. A classical result due to Bernstein [3] that relates an estimate of the size of the
derivative and the polynomial for the uniform norm on the unit circle states that, if P(z) is a
polynomial of degree n, then

max|z|=1
|P ′(z)| ≤ nmax|z|=1

|P(z)|. (1.1)

Inequality (1.1) was proved by Bernstein in 1912, and later, in 1930 (see [4]), Bernstein
revisited this inequality and proved that, for two polynomial P(z) and Q(z) with degree of
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P(z) not exceeding that of Q(z) and Q(z) �= 0 for |z| > 1, the inequality |P(z)| ≤ |Q(z)|
on the unit circle |z| = 1 implies the inequality of their derivatives |P ′

(z)| ≤ |Q ′
(z)| on

|z| = 1. In particular, for Q(z) = zn max|z|=1 |P(z)|, this classical result allows one to
establish (1.1). It is important to mention that these inequalities of Bernstein have seen the
starting point of a considerable literature in polynomial approximation, and over a period,
these inequalities were generalized and extended in several directions, in different norms and
for different classes of functions. If we restrict ourselves to the class of polynomials having
no zeros in |z| < 1, then (1.1) can be sharpened. This fact was observed by Erdös and later
verified by Lax [13] by proving that if P(z) �= 0 in |z| < 1, then

max|z|=1
|P ′(z)| ≤ n

2
max|z|=1

|P(z)|, (1.2)

whereas, if the polynomial P(z) has all its zeros in |z| ≤ 1, then Turán [24] proved that

max|z|=1
|P ′(z)| ≥ n

2
max|z|=1

|P(z)|. (1.3)

As an extension of (1.2), Malik [14] proved that if P(z) �= 0 in |z| < k, k ≥ 1, then

max|z|=1
|P ′(z)| ≤ n

1 + k
max|z|=1

|P(z)|, (1.4)

whereas, if the polynomial P(z) has all its zeros in |z| ≤ k, k ≥ 1, it was shown by Govil
[7] that (1.3) can be replaced by

max|z|=1
|P ′(z)| ≥ n

1 + kn
max|z|=1

|P(z)|. (1.5)

For the class of polynomials not vanishing in |z| < k, k ≤ 1, the precise estimate of
maximum |P ′(z)| on |z| = 1 is not easily obtainable. For quite some time it was believed
that if P(z) �= 0 in |z| < k, k ≤ 1, then the inequality analogous to (1.4) should be

max|z|=1
|P ′(z)| ≤ n

1 + kn
max|z|=1

|P(z)|, (1.6)

till Professor Saff gave the example P(z) = (z − 1
2 )(z + 1

3 ) to counter this belief. Finally,
in 1980, it was shown by Govil [6] that (1.6) holds with an additional hypothesis and proved
the following result.

Theorem A Let P(z) be a polynomial of degree n having no zeros in |z| < k, k ≤ 1, and let

Q(z) = zn P
( 1
z

)
. If |P ′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then

max|z|=1
|P ′(z)| ≤ n

1 + kn
max|z|=1

|P(z)|. (1.7)

The result is best possible and equality in (1.7) holds for P(z) = zn + kn.

In 1997, Aziz and Ahmad [2] improved the bound in (1.7) and proved the following result.

Theorem B Let P(z) be a polynomial of degree n having no zeros in |z| < k, k ≤ 1, and let

Q(z) = zn P
( 1
z

)
. If |P ′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then

max|z|=1
|P ′(z)| ≤ n

1 + kn

{

max|z|=1
|P(z)| − min|z|=k

|P(z)|
}

. (1.8)

The result is best possible and equality in (1.8) holds for P(z) = zn + kn.
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For a polynomial P(z) of degree n, we define

DαP(z) := nP(z) + (α − z)P ′(z),

the polar derivative of P(z) with respect to the point α. The polynomial DαP(z) is of degree
at most n − 1 and it generalizes the ordinary derivative in the sense that

lim
α→∞

{
DαP(z)

α

}

= P ′(z),

uniformly with respect to z for |z| ≤ R, R > 0.
Aziz [1] was among the first to extend some of the above inequalities by replacing the
derivative with the polar derivative of polynomial. In fact, in 1988, Aziz proved that if P(z)
is a polynomial of degree n and P(z) �= 0 in |z| < k, k ≥ 1, then for any complex number
α with |α| ≥ 1,

max|z|=1
|DαP(z)| ≤ n

( |α| + k

1 + k

)

max|z|=1
|P(z)|. (1.9)

If we divide both sides of (1.9) by |α| andmake |α| → ∞, we get (1.4). For more information
on polar derivative of polynomial, one can consult the books of Milovanović et al. [16],
Marden [15] and Rahman and Schmeisser [23]. Recently, Kumar [12] had used the new
version of the Schwarz lemma and proved a polar derivative inequality for the class of
polynomials P(z) having all zeros in |z| ≤ k, k ≥ 1, that involve the modulus of each zero
of the underlying polynomial. More precisely, Kumar proved that if P(z) = ∑n

j=0 c j z
j =

cn
∏n

j=1(z − z j ) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for
any complex number α with |α| ≥ k,

max|z|=1
|DαP(z)| ≥ 2

( |α| − k

1 + kn

)[

1 + (|an |kn − |a0|)(k − 1)

2(|an |kn + k|a0|)
]

×
n∑

j=1

k

k + |z j | max|z|=1
|P(z)|. (1.10)

Since k ≥ 1, therefore k
k+|z j | ≥ 1

2 for 1 ≤ j ≤ n, the above inequality (1.10) gives, in
particular, the following result.

Theorem C If P(z) = ∑n
j=0 c j z

j is a polynomial of degree n having all its zeros in |z| ≤
k, k ≥ 1, then for every complex number α with |α| ≥ k,

max|z|=1
|DαP(z)| ≥ n

( |α| − k

1 + kn

) [

1 + (|an |kn − |a0|)(k − 1)

2(|an |kn + k|a0|)
]

max|z|=1
|P(z)|. (1.11)

If we divide both sides of (1.11) by |α| and let |α| → ∞, we get the following refinement of
(1.5):

max|z|=1
|P ′(z)| ≥ n

1 + kn

[

1 + (|an |kn − |a0|)(k − 1)

2(|an |kn + k|a0|)
]

max|z|=1
|P(z)|. (1.12)

For the latest research and development in this direction, one can see some of the papers
[8,12,17–22] and also a recently published book chapter byGovil andKumar [9]. The present
paper is mainly motivated by the desire to establish some improved bounds for the polar
derivative of a polynomial by using some of its coefficients. The obtained results besides
yield polar derivative generalizations of (1.7) and (1.8), also produce refinements of (1.11),
(1.12) and related inequalities.
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2 Main results

We begin by presenting the following Bernstein-type inequality for the polar derivative of a
polynomial. The obtained result not only yields the polar derivative generalization of (1.7),
but also provides a sharpening of it .

Theorem 1 Let P(z) = ∑n
j=0 c j z

j be a polynomial of degree n having no zeros in |z| <

k, k ≤ 1, and let Q(z) = zn P
( 1
z

)
. If |P ′(z)| and |Q′(z)| attain maximum at the same point

on |z| = 1, then for every complex number α with |α| ≥ 1,

max|z|=1
|DαP(z)| ≤ n

( |α| + kn−1S0(k)

1 + kn−1S0(k)

)

max|z|=1
|P(z)|, (2.1)

where

S0(k) = |cn |kn+1 + |c0|
|cn |kn−1 + |c0| .

The result is best possible and equality in (2.1) holds for P(z) = zn + kn, with real α ≥ 1.

Remark 1 Since P(z) = ∑n
j=0 c j z

j �= 0 in |z| < k, k ≤ 1, and if z1, z2, . . . zn , are the
zeros of P(z) then

∣
∣
∣
∣
c0
cn

∣
∣
∣
∣ = |z1z2 . . . zn | ≥ kn . (2.2)

Using this, one can easily check that

S0(k) = |cn |kn+1 + |c0|
|cn |kn−1 + |c0| ≥ k.

Also, for every α ∈ C, the function

x 	→ |α| + x

1 + x
, (x ≥ 0)

is decreasing for |α| ≥ 1, it follows that

|α| + kn−1S0(k)

1 + kn−1S0(k)
≤ |α| + kn

1 + kn
.

Hence, from Theorem 1, we get the following polar derivative generalization of Theorem
A.

Corollary 1 Let P(z) = ∑n
j=0 c j z

j be a polynomial of degree n having no zeros in |z| <

k, k ≤ 1, and let Q(z) = zn P
( 1
z

)
. If |P ′(z)| and |Q′(z)| attain maximum at the same point

on |z| = 1, then for every complex number α with |α| ≥ 1,

max|z|=1
|DαP(z)| ≤ n

( |α| + kn

1 + kn

)

max|z|=1
|P(z)|. (2.3)

The result is best possible and equality in (2.3) holds for P(z) = zn + kn, with real α ≥ 1.

Remark 2 Clearly (2.3) is a generalization of (1.7) and to obtain (1.7) from the above corollary,
simply divide both sides of (2.3) by |α| and let |α| → ∞.
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Remark 3 Dividing both sides of (2.1) by |α| and let |α| → ∞, we get under the same
hypothesis as in Theorem 1, that

max|z|=1
|P ′(z)| ≤ n

1 + kn−1S0(k)
max|z|=1

|P(z)|. (2.4)

Equality in (2.4) holds for P(z) = zn + kn .

In fact, excepting the case when all the zeros of P(z) lie on |z| = k, the bound obtained in
(2.4) is always sharper than the bound obtained in Theorem A as S0(k) ≥ k. Next, we shall
prove the following refinement of Theorem 1, which in turn sharpen the bounds in Theorems
A and B.

Theorem 2 Let P(z) = ∑n
j=0 c j z

j be a polynomial of degree n having no zeros in |z| <

k, k ≤ 1, and let Q(z) = zn P
( 1
z

)
. If |P ′(z)| and |Q′(z)| attain maximum at the same point

on |z| = 1, then for every complex number α with |α| ≥ 1,

max|z|=1
|DαP(z)| ≤ n

1 + kn Sm(k)

(
(|α| + kn Sm(k)

)
max|z|=1

|P(z)| − m(|α| − 1)Sm(k)

)

,

(2.5)

where

Sm(k) = |c0| + |cn |kn+1 + km

|c0|k + |cn |kn + m
and m = min|z|=k

|P(z)|.

The result is best possible and equality in (2.5) holds for P(z) = zn + kn, with real α ≥ 1.

Remark 4 Recall that P(z) = ∑n
j=0 c j z

j �= 0 in |z| < k, k ≤ 1. We first show that

kn |cn | ≤ |c0| − m. (2.6)

We can assume without loss of generality that P(z) has no zeros on |z| = k, for otherwise
(2.6) holds trivially by (2.2). Now, as in the proof of Lemma 3 (given in next section), we
have for every λ with |λ| < 1, the polynomial

P(z) + λmzn

kn
=

(

cn + λm

kn

)

zn +
n−1∑

j=0

c j z
j

does not vanish in |z| < k, k ≤ 1, hence
∣
∣
∣
∣
∣

c0
cn + λm

kn

∣
∣
∣
∣
∣
≥ kn . (2.7)

If in (2.7), we choose the argument of λ suitably, so that
∣
∣
∣
∣cn + λm

kn

∣
∣
∣
∣ = |cn | + |λ|m

kn
,

we get

kn |cn | + |λ|m ≤ |c0|. (2.8)

The inequality (2.6) follows by letting |λ| → 1 in (2.8).
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By using the inequality (2.6), one can see that Sm(k) ≥ 1 for every k ≤ 1. Also, it is easy to
verify that the function

x 	→
( |α| + knx

1 + knx

)

max|z|=1
|P(z)| −

(
x(|α| − 1)

1 + knx

)

min|z|=k
|P(z)|, (x ≥ 0)

is decreasing for |α| ≥ 1, we get from Theorem 2, the following polar derivative analogue
of Theorem B.

Corollary 2 Let P(z) = ∑n
j=0 c j z

j be a polynomial of degree n having no zeros in |z| <

k, k ≤ 1, and let Q(z) = zn P
( 1
z

)
. If |P ′(z)| and |Q′(z)| attain maximum at the same point

on |z| = 1, then for every complex number α with |α| ≥ 1,

max|z|=1
|DαP(z)| ≤ n

1 + kn

(
(|α| + kn

)
max|z|=1

|P(z)| − (|α| − 1
)
min|z|=k

|P(z)|
)

. (2.9)

The result is best possible and equality in (2.9) holds for P(z) = zn + kn, with real α ≥ 1.

Remark 5 Dividing both sides of (2.9) by |α| and let |α| → ∞, we get (1.8).

Remark 6 Dividing both sides of (2.5) by |α| and let |α| → ∞, we get under the same
hypothesis as in Theorem 2, the following refinement of Theorem B.

max|z|=1
|P ′(z)| ≤ n

1 + kn Sm(k)

(

max|z|=1
|P(z)| − mSm(k)

)

, (2.10)

where m and Sm(k) are as defined in Theorem 2.
Equality in (2.10) holds for P(z) = zn + kn .
We shall also prove the following Turán-type inequality for a polynomial that sharpens
Theorem C.

Theorem 3 If P(z) = ∑n
j=0 c j z

j is a polynomial of degree n having all its zeros in |z| ≤
k, k ≥ 1, then for every complex number α with |α| ≥ k, we have

max|z|=1
|DαP(z)| ≥ n

( |α| − k

1 + kn

) (

1 + |an |kn − |a0|
n(|an |kn + |a0|)

)

×
(

1 + (|an |kn − |a0|)(k − 1)

2(|an |kn + k|a0|)
)

max|z|=1
|P(z)|. (2.11)

Remark 7 If we divide both sides of (2.11) by |α| and let |α| → ∞, we get

max|z|=1
|P ′(z)| ≥

(
n

1 + kn

) (

1 + |an |kn − |a0|
n(|an |kn + |a0|)

)

×
(

1 + (|an |kn − |a0|)(k − 1)

2(|an |kn + k|a0|)
)

max|z|=1
|P(z)|,

thereby, sharpening the inequality (1.12).

Now, we compare the bounds of the obtained results by means of the following examples.

Example 1 Consider the polynomial P(z) = z3 − z2 + z − 1. Clearly P(z) has all its zeros
{1, i,−i} which all lie on |z| = 1. Further

Q(z) = zn P

(
1

z

)

= −P(z),

123



Bernstein and Turán-type inequalities… Page 7 of 12   124 

so that |P ′(z)| and |Q′(z)| attainmaximumat the samepoint on |z| = 1.We take k = 1
2 , so that

P(z) �= 0 in |z| < k = 1
2 . We find numerically that max|z|=1 |P(z)| = 4, min|z|= 1

2
|P(z)| =

5
8 . Taking α = 3+ i

√
7

2 , so that |α| = 2, we obtain the following estimates:

max|z|=1
|DαP(z)| ≤ 21.89 (by Theorem 1),

max|z|=1
|DαP(z)| ≤ 22.66 (by (2.3)),

max|z|=1
|DαP(z)| ≤ 20.73 (by Theorem 2),

max|z|=1
|DαP(z)| ≤ 21.0 (by (2.9)).

For the same polynomial, we can compare the obtained bounds with Theorems A and B as
follows:

max|z|=1
|P ′(z)| ≤ 10.7 (by Theorem A),

max|z|=1
|P ′(z)| ≤ 9.0 (by Theorem B),

max|z|=1
|P ′(z)| ≤ 9.89 (by (2.4)),

max|z|=1
|P ′(z)| ≤ 8.7 (by (2.10)).

In the same way, Theorem 3 in general provides much better information than Theorem C
regrading the maximum of |DαP(z)| on |z| = 1. We illustrate this with the help of following
example.

Example 2 Consider P(z) = z2+3z+ 5
4 . Clearly, P(z) is a polynomial of degree 2 having all

its zeros in |z| ≤ 5
2 . We take k = 3 and α ∈ C with |α| = 4. We find that max|z|=1 |P(z)| =

21
4 . Using Theorem C for this polynomial with k = 3, we see that

max|z|=1
|DαP(z)| ≥ 1.69,

while as Theorem 3, gives

max|z|=1
|DαP(z)| ≥ 2.33,

which is much better than the bound given by (1.11).

3 Auxiliary results

In order to prove our main results, we need the following lemmas.

Lemma 1 If P(z) = ∑n
j=0 c j z

j is a polynomial of degree n having all its zeros in |z| ≤
k, k ≥ 1 and Q(z) = zn P

( 1
z

)
, then on |z| = 1,

|Q′(z)| ≤ kn+1
( |cn |kn−1 + |c0|

|cn |kn+1 + |c0|
)

max|z|=1
|P ′(z)|.

The above lemma is due to Jain ([11], inequality (3.13)).
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Lemma 2 If P(z) = ∑n
j=0 c j z

j is a polynomial of degree n having no zeros in |z| < k, k ≤ 1

and, let Q(z) = zn P
( 1
z

)
, then on |z| = 1,

kn−1S0(k)|P ′(z)| ≤ max|z|=1
|Q′(z)|, (3.1)

where S0(k) is as defined in Theorem 1.

Proof Since P(z) = ∑n
j=0 c j z

j �= 0 in |z| < k, k ≤ 1, it follows that all the zeros of the

polynomial Q(z) = zn P
( 1
z

)
of degree n lie in |z| ≤ 1

k ,
1
k ≥ 1. Also P(z) = znQ

( 1
z

)
, we

get on applying Lemma 1 to Q(z) for |z| = 1,

|P ′(z)| ≤ 1

kn+1

( |c0| 1
kn−1 + |cn |

|c0| 1
kn+1 + |cn |

)

max|z|=1
|Q′(z)|

= 1

kn−1

( |c0| + |cn |kn−1

|c0| + |cn |kn+1

)

max|z|=1
|Q′(z)|,

which is equivalent to (3.1) and this proves Lemma 2 completely.

Lemma 3 If P(z) = ∑n
j=0 c j z

j is a polynomial of degree n having no zeros in |z| < k, k ≤ 1

and, let Q(z) = zn P
( 1
z

)
, then on |z| = 1,

kn Sm(k)
(
|P ′(z)| + mn

kn

)
≤ max|z|=1

|Q′(z)|,

where Sm(k) and m are as defined in Theorem 2.

Proof Sincem ≤ |P(z)| for |z| = k. Observe first that if P(z) has some zeros on |z| = k, then
m = min|z|=k |P(z)| = 0 and in this case the result follows from Lemma 2. So, henceforth,
we assume that all the zeros of P(z) lie in |z| > k, k ≤ 1. Clearly m > 0, and we have

∣
∣
∣
∣λm

zn

kn

∣
∣
∣
∣ < |P(z)| on |z| = k for any λ with |λ| < 1.

By Rouché’s theorem, it follows that the polynomial F(z) = P(z) + λm zn
kn has no zeros in

|z| < k, k ≤ 1. Let G(z) = zn F
( 1
z

) = zn P
( 1
z

) + λ m
kn = Q(z) + λ m

kn .
Applying Lemma 2 to F(z), we get for any λ with |λ| < 1, and |z| = 1,

kn−1

( |c0| + |cn + λm
kn |kn+1

|c0| + |cn + λm
kn |kn−1

)

|F ′(z)| ≤ max|z|=1
|G ′(z)|,

implying that

kn−1

(
|c0| + |cn + λm

kn |kn+1

|c0| + |cn + λm
kn |kn−1

) ∣
∣
∣
∣P

′(z) + λmnzn−1

kn

∣
∣
∣
∣ ≤ max|z|=1

|Q′(z)|, (3.2)

for |z| = 1 and |λ| < 1.
For every λ ∈ C, we have

∣
∣
∣
∣cn + λm

kn

∣
∣
∣
∣ ≤ |cn | + |λ|m

kn
,
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and since the function

x 	→ |c0| + kn+1x

|c0| + kn−1x
, (x ≥ 0)

is non-increasing for k ≤ 1, it follows from (3.2) that for every |λ| < 1 and |z| = 1,

kn−1

⎛

⎝
|c0| +

(
|cn | + |λ|m

kn

)
kn+1

|c0| +
(
|cn | + |λ|m

kn

)
kn−1

⎞

⎠
∣
∣
∣
∣P

′(z) + λmnzn−1

kn

∣
∣
∣
∣ ≤ max|z|=1

|Q′(z)|. (3.3)

Choosing the argument of λ on the left hand side of (3.3) suitably, we get for |z| = 1,

kn
( |c0| + |cn |kn+1 + |λ|mk

|c0|k + |cn |kn + |λ|m
) (

|P ′(z)| + |λ|mn

kn

)

≤ max|z|=1
|Q′(z)|. (3.4)

Finally, letting |λ| → 1 in (3.4), we get the required assertion. Hence Lemma 3 is proved.

Lemma 4 If P(z) is a polynomial of degree n and Q(z) = zn P
( 1
z

)
, then on |z| = 1,

|P ′(z)| + |Q′(z)| ≤ nmax|z|=1
|P(z)|.

This lemma is a special case of a result due to Govil and Rahman [10].

Lemma 5 If P(z) = ∑n
j=0 c j z

j is a polynomial of degree n having all its zeros in |z| ≤ 1,
then for every α with |α| ≥ 1 and |z| = 1,

|DαP(z)| ≥ (|α| − 1)

(
n

2
+ |cn | − |c0|

2(|cn | + |c0|)
)

max|z|=1
|P(z)|.

The above lemma is due to Mir, Wani and Gulzar [22].

Lemma 6 If P(z) = ∑n
j=0 c j z

j is a polynomial of degree n having all its zeros in |z| ≤
k, k ≥ 1, then

max|z|=k
|P(z)| ≥

(
2kn

1 + kn
+ kn(|cn |kn − |c0|)(k − 1)

(1 + kn)(|cn |kn + k|c0|)
)

max|z|=1
|P(z)|.

The above lemma is due to Kumar [12].

4 Proofs of main results

Proof of Theorem 1 Recall that P(z) = ∑n
j=0 c j z

j �= 0 in |z| < k, k ≤ 1. By Lemma 2, we
have

kn−1S0(k)max|z|=1
|P ′(z)| ≤ max|z|=1

|Q′(z)|. (4.1)

Also, |P ′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1. Let

max|z|=1
|P ′(z)| = |P ′(eiα)|, 0 ≤ α < 2π (4.2)

then

max|z|=1
|Q′(z)| = |Q′(eiα)|. (4.3)
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On combining (4.1), (4.2), (4.3) and Lemma 4, we get

max|z|=1
|P ′(z)| + kn−1S0(k)max|z|=1

|P ′(z)| ≤ nmax|z|=1
|P(z)|,

which is equivalent to

max|z|=1
|P ′(z)| ≤ n

1 + kn−1S0(k)
max|z|=1

|P(z)|. (4.4)

Since Q(z) = zn P
( 1
z

)
, it is easy to verify that for |z| = 1,

|Q′(z)| = |nP(z) − zP ′(z)|. (4.5)

Also, for every complex number α with |α| ≥ 1, we have by (4.5) and |z| = 1,

|DαP(z)| = |nP(z) + (α − z)P ′(z)|
= |nP(z) − zP ′(z) + αP ′(z)|
≤ |nP(z) − zP ′(z)| + |α||P ′(z)|
= |Q′(z)| + |α||P ′(z)|
= |Q′(z)| + |P ′(z)| − |P ′(z)| + |α||P ′(z)|
≤ nmax|z|=1

|P(z)| + (|α| − 1)|P ′(z)| (by Lemma 4)

≤ nmax|z|=1
|P(z)| + (|α| − 1)max|z|=1

|P ′(z)|. (4.6)

Inequality (4.6) in conjunction with inequality (4.4), gives for |z| = 1,

|DαP(z)| ≤ nmax|z|=1
|P(z)| + (|α| − 1)

{
n

1 + kn−1S0(k)
max|z|=1

|P(z)|
}

,

from which we can obtain (2.1). This completes the proof of Theorem 1.

Proof of Theorem 2 Recall that P(z) = ∑n
j=0 c j z

j �= 0 in |z| < k, k ≤ 1, therefore, by
Lemma 3, we have

kn Sm(k)max|z|=1
|P ′(z)| + mnSm(k) ≤ max|z|=1

|Q′(z)|. (4.7)

By the given hypothesis, |P ′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1.
Let

max|z|=1
|P ′(z)| = |P ′(eiα)|, 0 ≤ α < 2π (4.8)

then

max|z|=1
|Q′(z)| = |Q′(eiα)|. (4.9)

Also, by Lemma 4, we have

|P ′(eiα)| + |Q′(eiα)| ≤ nmax|z|=1
|P(z)|,

which gives with the help of (4.7), (4.8) and (4.9), that

nmax|z|=1
|P(z)| ≥ max|z|=1

|P ′(z)| + kn Sm(k)max|z|=1
|P ′(z)| + mnSm(k),
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which implies

max|z|=1
|P ′(z)| ≤ n

(1 + kn Sm(k))

(

max|z|=1
|P(z)| − mSm(k)

)

. (4.10)

Using the definition of polar derivative, we have from (4.6) that for every α with |α| ≥ 1 and
|z| = 1,

|DαP(z)| ≤ nmax|z|=1
|P(z)| + (|α| − 1)max|z|=1

|P ′(z)|. (4.11)

Inequality (4.11) in conjunction with inequality (4.10), gives for |z| = 1,

|DαP(z)| ≤ nmax|z|=1
|P(z)| + (|α| − 1)

{
n

1 + kn Sm(k)

(

max|z|=1
|P(z)| − mSm(k)

) }

,

from which we can obtain (2.5). This completes the proof of Theorem 2.

Proof of Theorem 3 By hypothesis P(z) = ∑n
j=0 c j z

j has all its zeros in |z| ≤ k, k ≥ 1,
hence all the zeros of G(z) = P(kz) lie in |z| ≤ 1. Also, noting by hypothesis we have
|α|
k ≥ 1, it follows by using Lemma 5, that

max|z|=1

∣
∣
∣D α

k
G(z)

∣
∣
∣ ≥

( |α| − k

k

)(
n

2
+ |cn |kn − |c0|

2(|cn |kn + |c0|)
)

max|z|=1
|G(z)|,

which is equivalent to

max|z|=1

∣
∣
∣nP(kz) +

(α

k
− z

)
kP ′(kz)

∣
∣
∣ ≥

( |α| − k

k

) (
n

2
+ |cn |kn − |c0|

2(|cn |kn + |c0|)
)

× max|z|=k
|P(z)|. (4.12)

Using the fact that max|z|=1
∣
∣nP(kz) + (

α
k − z

)
kP ′(kz)

∣
∣ = max|z|=k |DαP(z)| and the

Lemma 6, in (4.12), we get

max|z|=k
|DαP(z)| ≥

( |α| − k

k

) (
n

2
+ |cn |kn − |c0|

2(|cn |kn + |c0|)
)

×
(

2kn

1 + kn
+ kn(|cn |kn − |c0|)(k − 1)

(1 + kn)(|cn |kn + k|c0|)
)

max|z|=1
|P(z)|. (4.13)

Since DαP(z) is a polynomial of degree n− 1 and k ≥ 1, hence by Bernstein-inequality, we
have max|z|=k |DαP(z)| ≤ kn−1 max|z|=1 |DαP(z)|, which on using in (4.13), gives

kn−1 max|z|=1
|DαP(z)| ≥ nkn−1

( |α| − k

1 + kn

)(

1 + |cn |kn − |c0|
n(|cn |kn + |c0|)

)

×
(

1 + (|cn |kn − |c0|)(k − 1)

2(|cn |kn + k|c0|)
)

max|z|=1
|P(z)|,

which in particular gives (2.11) and this completes the proof of Theorem 3.

Remark 8 In the Theorems 1, 2 and Corollaries 1, 2, the condition that |P ′(z)| and |Q′(z)|
attain maximum at the same point on |z| = 1, is needed only for 0 < k < 1. For k = 1, all
these results hold without this condition, for example see Dewan et al. [5, Theorem 1] for
k = t = 1).
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Remark 9 It may be remarked here that Theorem 3 also improves a result of Govil and Kumar
([8, Theorem 1.1] for m = 0) considerably when k > 1. In fact, excepting the case when
all the zeros of the polynomial P(z) lie on |z| = k, the considerable improvement can be
observed over here by virtue of Lemma 6 which improves the corresponding lemma used by
Govil and Kumar in that paper for the case k �= 1.
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