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Abstract
In this paper, we establish some new inequalities in the complex plane that are inspired by
some classical Turán-type inequalities that relate the norm of a univariate complex coeffi-
cient polynomial and its derivative on the unit disk. The obtained results produce various
inequalities in the supremum-norm and in the integral-norm of a polynomial that are sharper
than the previous ones while taking into account the placement of the zeros and some of
the extremal coefficients of the underlying polynomial. Moreover, our results besides derive
polar derivative analogues of some classical Turán-type inequalities also include several
interesting generalizations and refinements of some integral inequalities for polynomial as
well. Some numerical examples are given in order to graphically illustrate and compare the
obtained inequalities with some classical results.

Keywords Turán’s classical inequality · Minimum Modulus Principle · Polar derivative of a
polynomial

Mathematics Subject Classification 30A10 · 30C10 · 30C15

1 Introduction to Turán type inequalities

Let Pn be the class of all complex polynomials P(z) := ∑n
ν=0 cν zν of degree n and P ′(z)

its derivative. The study of Turán-type inequalities relating the norm of the derivative and
the polynomial itself as well as generalizing the classical polynomial inequalities is a fertile
area in analysis for researchers. Here, we study some of the new inequalities centered around
Turán-type inequalities that relate the norm of the polar derivative (derivative) and the poly-
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nomial under some conditions. One of the Turán’s classical inequality [26] provides a lower
bound estimate to the size of the derivative of a polynomial on the unit circle in the plane
relative to the size of the polynomial itself when there is a restriction on its zeros. It states
that if P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then

max|z|=1
|P ′(z)| ≥ n

2
max|z|=1

|P(z)|. (1.1)

As a refinement of (1.1),Aziz andDawood [2] under the samehypothesis proved the following
result:

max|z|=1
|P ′(z)| ≥ n

2

{

max|z|=1
|P(z)| + min|z|=1

|P(z)|
}

. (1.2)

Equality in (1.1) and (1.2) holds for any polynomial which has all its zeros on |z| = 1.
Over the years, Turán’s inequality (1.1) has been generalized and extended in several

directions. Before proceeding towards some specific generalizations of (1.1) for a particular
operator, we find it useful to mention few of its extensions for the ordinary derivative. As an
extension of (1.1), Malik [13] established that

max|z|=1
|P ′(z)| ≥ n

1 + k
max|z|=1

|P(z)|, (1.3)

when the polynomial P ∈ Pn has all its zeros in |z| ≤ k, k ≤ 1.
As a generalization of (1.1), Govil [10] proved that if P ∈ Pn has all its zeros in |z| ≤ k,

k ≥ 1, then

max|z|=1
|P ′(z)| ≥ n

1 + kn
max|z|=1

|P(z)|. (1.4)

Equality in (1.3) holds for P(z) = (z+k)n ,where as equality in (1.4) holds for P(z) = zn+kn .
Although the inequality (1.4) is sharp but it has a drawback. The bound in this inequality

depends on the zero of largest modulus and not on the other zeros even if some of them are
very close to the origin. This was taken into consideration by Aziz [1], who proved that if
P(z) = cn

∏n
ν=1(z − zν) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,

then

max|z|=1
|P ′(z)| ≥ 2

1 + kn

n∑

ν=1

k

k + |zν | max|z|=1
|P(z)|, (1.5)

whereas in 2008, Dewan and Upadhye [5] strengthened (1.5) by proving under the same
hypothesis that

max|z|=1
|P ′(z)| ≥

[
2

1 + kn
max|z|=1

|P(z)| + 1

kn
· k

n − 1

kn + 1
min|z|=k

|P(z)|
] n∑

ν=1

k

k + |zν | . (1.6)

Equality in (1.5) and (1.6) holds for P(z) = zn + kn .
In 2007, Dubinin [7] used the classical Schwarz lemma and obtained an interesting refine-

ment of (1.1). Precisely, Dubinin proved that if P(z) = ∑n
ν=0 cνzν ∈ Pn has all its zeros in

|z| ≤ 1, then

max|z|=1
|P ′(z)| ≥

{
n

2
+ 1

2

|cn | − |c0|
|cn | + |c0|

}

max|z|=1
|P(z)|. (1.7)

It isworthmentioning that different versions ofTurán’s inequality (cf. [15, pp. 664–674]) have
appeared in the literature in more generalized forms in which the underlying polynomial is
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replaced by more general classes of functions. These inequalities have their own significance
and importance in Approximation theory. Before proceeding to some other results, let us
introduce the concept of the polar derivative involved. For P ∈ Pn , we define

Dβ P(z) := nP(z) + (β − z)P ′(z),

the polar derivative of P(z) with respect to the point β (see [14] and [9, Chap. 6]). The
polynomial Dβ P(z) is of degree at most n − 1 and it generalizes the ordinary derivative in
the sense that

lim
β→∞

{
Dβ P(z)

β

}

= P ′(z),

uniformly with respect to z for |z| ≤ R, R > 0.
Various results of majorization on the polar derivative of a polynomial can be found in the

comprehensive books of Milovanović et al. [15], Marden [14] and Rahman and Schmeisser
[24], where some approaches to obtaining polynomial inequalities are developed on applying
the methods and results of the geometric function theory. For the latest research and devel-
opment in this direction, one can see some of papers and monographs (see [9, 12, 16–20,
22]).

In 1996, Shah [25] established the polar derivative analogue of (1.1) by proving that if
P ∈ Pn has all its zeros in |z| ≤ 1, then for every β ∈ C with |β| ≥ 1,

max|z|=1
|Dβ P(z)| ≥ n

|β| − 1

2
max|z|=1

|P(z)|. (1.8)

If we divide both sides of the above inequality (1.8) by |β| and let |β| → +∞, we obtain the
inequality (1.1). Aziz and Rather [3] extended (1.3) to the polar derivative of a polynomial
by showing that if P ∈ Pn has all its zeros in |z| ≤ k, k ≤ 1, then for every β ∈ C with
|β| ≥ k,

max|z|=1
|Dβ P(z)| ≥ n

|β| − k

1 + k
max|z|=1

|P(z)|, (1.9)

whereas, in the same paper, Aziz and Rather showed that if P ∈ Pn has all its zeros in |z| ≤ k,
k ≥ 1, then for |β| ≥ k,

max|z|=1
|Dβ P(z)| ≥ n

|β| − k

1 + kn
max|z|=1

|P(z)|, (1.10)

thereby giving a polar derivative generalization of (1.4).
Govil and McTume [11] proved under the same hypothesis as in (1.9), that

max|z|=1
|Dβ P(z)| ≥ n

|β| − L

1 + k
max|z|=1

|P(z)|, (1.11)

for every β ∈ C with |β| ≥ L , where

L = nk2|cn | + |cn−1|
|cn−1| + n|cn | . (1.12)

A similar type of modification as in (1.6) to the inequality (1.10) was given by Dewan and
Upadhye [5], who proved that if P(z) = ∑n

ν=0 cνzν = cn
∏n

ν=1(z − zν) is a polynomial of
degree n having all its zeros in |z| ≤ k, k ≥ 1, then for |β| ≥ k,
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max|z|=1
|Dβ P(z)| ≥ (|β| − k)

[
2

1 + kn
max|z|=1

|P(z)| + 1

kn
· k

n − 1

kn + 1
min|z|=k

|P(z)|
] n∑

ν=1

k

k + |zν | .

(1.13)

In 2018, Mir et al. [23] extended (1.7) to the polar derivative of a polynomial and thereby
obtained a generalization of it. More precisely, they proved that if P(z) = ∑n

ν=0 cνzν ∈ Pn

has all its zeros in |z| ≤ 1, then for every β ∈ C with |β| ≥ 1 and |z| = 1,

|Dβ P(z)| ≥ |β| − 1

2

{

n + |cn | − |c0|
|cn | + |c0|

}

max|z|=1
|P(z)|. (1.14)

They also proved the following more general result that if P ∈ Pn has all its zeros in |z| ≤ 1,
then for every β with |β| ≥ 1, 0 ≤ t < 1 and |z| = 1,

∣
∣Dβ P(z)

∣
∣ ≥ n

2

{

(|β| − 1)max|z|=1
|P(z)| + (|β| + 1) tm1

}

+ n
|β| − 1

2
· |cn | − tm1 − |c0|
|cn | − tm1 + |c0|

{

max|z|=1
|P(z)| − tm1

}

, (1.15)

where m1 = min|z|=1 |P(z)|.
Equality in (1.15) holds for P(z) = (z − 1)n with real β ≥ 1.
Very recently, Chanam et al. [4] obtained an inequality which is the Lr -analogue of (1.14).

In fact, they first proved the following result:

Theorem A If P(z) = ∑n
ν=0 cνzν ∈ Pn has all its zeros in |z| ≤ 1, then for every β ∈ C

with |β| ≥ 1 and for each r > 0,

{∫ 2π

0
|Dβ P(eiθ )|rdθ

}1/r

≥ n(|β| − 1)

2

{

1 + 1

n
· |cn | − |c0|
|cn | + |c0|

}{∫ 2π

0
|P(eiθ )|rdθ

}1/r

.

(1.16)

As an application of Theorem A, they also proved the following Lr -analogue of (1.15).

Theorem B If P(z) = ∑n
ν=0 cνzν ∈ Pn has all its zeros in |z| ≤ 1, then for every β ∈ C

with |β| ≥ 1, 0 ≤ t < 1 and for each r > 0,
⎧
⎨

⎩

∫ 2π

0

(

|Dβ P(eiθ )| − m1nt |β|
)r

dθ

⎫
⎬

⎭

1/r

≥ n(|β| − 1)

2

⎧
⎨

⎩
1 + 1

n
· |cn | − tm1 − |c0|
|cn | − tm1 + |c0|

⎫
⎬

⎭

{∫ 2π

0

(

|P(eiθ )| − tm1

)r

dθ

}1/r

, (1.17)

where m1 = min|z|=1 |P(z)|.
Taking limits as r → +∞ in (1.16) and (1.17), we get (1.14) and (1.15), respectively.
The present paper is mainly motivated by the desire to establish some improved bounds

for the polar derivative (derivative) of a polynomial both in the supremum-norm and in the
integral norm. The obtained results produce various Turán-type inequalities that are sharper
than the previous ones while taking into account the placement of the zeros and some of the
extremal coefficients of the underlying polynomial.
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The paper is organized as follows. In Sect. 2, we present some auxiliary results necessary
in proving the main results. Section 3 is devoted to the main results in the supremum-norm
and in the integral norm. Some numerical results are given in Sect. 4 in order to graphically
illustrate and compare our inequalities with some classical results. Finally, Sect. 5 contains
some conclusions.

2 Auxiliary results

For the proofs of our main results, we use the lemmas presented in this section.

Lemma 2.1 If P(z) = ∑n
ν=0 cνzν ∈ Pn, and P(z) �= 0 in |z| < 1, then for R ≥ 1 and

0 ≤ t ≤ 1, we have

max|z|=R
|P(z)| ≤ (1 + Rn)(|c0| + R|cn | − tm1)

(1 + R)(|c0| + |cn | − tm1)
max|z|=1

|P(z)|

−
(

(1 + Rn)(|c0| + R|cn | − tm1)

(1 + R)(|c0| + |cn | − tm1)
− 1

)

tm1, (2.1)

where m1 = min|z|=1 |P(z)|.
Equality in (2.1) holds for P(z) = (μ + νzn)/2, |μ| = |ν| = 1.

This lemma is due to Mir et al. [21].

Lemma 2.2 If P(z) = ∑n
ν=0 cν zν ∈ Pn has all its zeros in |z| ≤ k, k ≥ 1, then for 0 ≤ t ≤ 1,

we have

max|z|=k
|P(z)| ≥ 2kn

1 + kn

⎧
⎨

⎩

[

1 + k − 1

2
St (k)

]

max|z|=1
|P(z)|

+k − 1

2kn
[
kn−1 + kn−2 + · · · + k + 1 − St (k)

]
tm

⎫
⎬

⎭
, (2.2)

where St (k) and m are given by

St (k) = kn |cn | − |c0| − tm

kn |cn | + k|c0| − tm
and m = min|z|=k

|P(z)|.

Equality in (2.2) holds for P(z) = zn + kn.

Proof Let T (z) = P(kz). Since P(z) has all its zeros in |z| ≤ k, k ≥ 1, the polynomial T (z)
has all its zeros in |z| ≤ 1. Let H(z) = znT (1/z) be the reciprocal polynomial of T (z),
then H(z) is a polynomial of degree n having no zeros in |z| < 1. Hence applying (2.1) of
Lemma 2.1 to the polynomial H(z), we get for k ≥ 1, and 0 ≤ t ≤ 1,

max|z|=k
|H(z)| ≤ (1 + kn)(kn |cn | + k|c0| − tm∗)

(1 + k)(kn |cn | + |c0| − tm∗)
max|z|=1

|H(z)|

−
(

(1 + kn)(kn |cn | + k|c0| − tm∗)
(1 + k)(kn |cn | + |c0| − tm∗)

− 1

)

tm∗, (2.3)

where m∗ = min|z|=1 |H(z)|.
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Since |H(z)| = |T (z)| on |z| = 1, therefore,

m∗ = min|z|=1 |H(z)| = min|z|=1
∣
∣zn P

( k
z

)∣
∣ = min|z|=k |P(z)| = m,

max|z|=1 |H(z)| = max|z|=1 |T (z)| = max|z|=k |P(z)|,
and

max|z|=k
|H(z)| = max|z|=k

∣
∣
∣
∣z

n P

(
k

z

)∣
∣
∣
∣ = kn max|z|=1

|P(z)|.

The above when substituted in (2.3) gives

max|z|=k
|P(z)| ≥

(
(1 + k)(kn |cn | + |c0| − tm)

(1 + kn)(kn |cn | + k|c0| − tm)

)

kn max|z|=1
|P(z)|

+
(

1 − (1 + k)(kn |cn | + |c0| − tm)

(1 + kn)(kn |cn | + k|c0| − tm)

)

tm. (2.4)

Using the fact that

(1 + k)(kn |cn | + |c0| − tm)

(1 + kn)(kn |cn | + k|c0| − tm)
= 2

1 + kn
+ (kn |cn | − |c0| − tm)(k − 1)

(1 + kn)(kn |cn | + k|c0| − tm)
,

in (2.4), we get (2.2) and this completes the proof of Lemma 2.2. 
�
Lemma 2.3 If P(z) = ∑n

ν=0 cνzν ∈ Pn, then for all R ≥ 1,

max|z|=R
|P(z)| ≤ Rn max|z|=1

|P(z)| − (
Rn − Rn−2) |P(0)|, if n ≥ 2, (2.5)

and

max|z|=R
|P(z)| ≤ Rmax|z|=1

|P(z)| − (R − 1)|P(0)|, if n = 1. (2.6)

The above lemma is due to Frappier et al. [8].

Lemma 2.4 If P(z) = ∑n
ν=0 cνzν ∈ Pn has all its zeros in |z| ≤ k, k ≤ 1, then on |z| = 1,

we have

|Q′(z)| ≤ nk2|cn | + |cn−1|
|cn−1| + n|cn |

∣
∣P ′(z)

∣
∣ ,

where Q(z) = zn P (1/z).

This lemma is due to Govil and McTume [11].

Lemma 2.5 If xν , ν = 1, 2, . . . , n, is a sequence of real numbers such that for all ν ∈ N, we
have 0 ≤ xν ≤ 1, then for all n ∈ N

n∑

ν=1

1 − xν

1 + xν

≥ 1 − ∏n
ν=1 xν

1 + ∏n
ν=1 xν

.

Proof We prove this result with the help of mathematical induction and we use induction on
n. The result is trivially true for n = 1.

For n = 2

1 − x1
1 + x1

+ 1 − x2
1 + x2

≥ 1 − x1x2
1 + x1x2
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if

2(1 − x1x2)

1 + x1 + x2 + x1x2
≥ 1 − x1x2

1 + x1x2
,

i.e., if (1− x1)(1− x2) ≥ 0, which is true, since x1, x2 ≤ 1. This shows that the result holds
for n = 2. Assume the result is true for n = s ∈ N. Now, since

∏s
ν=1 xν ≤ 1, we have

s+1∑

ν=1

1 − xν

1 + xν

=
s∑

ν=1

1 − xν

1 + xν

+ 1 − xs+1

1 + xs+1

≥ 1 − ∏s
ν=1 xν

1 + ∏s
ν=1 xν

+ 1 − xs+1

1 + xs+1
(by induction hypothesis)

≥ 1 − ∏s+1
ν=1 xν

1 + ∏s+1
ν=1 xν

(by the case n = 2).

This shows that the result holds for n = s + 1 as well. Therefore, by the principle of
mathematical induction, it follows that the result holds for all n ∈ N. This completes the
proof of Lemma 2.5. 
�
Lemma 2.6 If P(z) = ∑n

ν=0 cνzν ∈ Pn and P(z) �= 0 in |z| > k, k ≤ 1, then for each point
z on |z| = 1 at which P(z) �= 0, we have

Re

(
zP ′(z)
P(z)

)

≥ n

1 + k

⎧
⎨

⎩
1 + k

n
· k

n |cn | − |c0|
kn |cn | + |c0|

⎫
⎬

⎭
. (2.7)

Proof Recall that P ∈ Pn and P(z) has all its zeros in |z| ≤ k, k ≤ 1. If z1, z2, . . . , zn
are the zeros of P(z) = ∑n

ν=0 cνzν of degree n, then |zν | ≤ k, k ≤ 1, and we can write
P(z) = cn

∏n
ν=1(z − zν). This gives

zP ′(z)
P(z)

=
n∑

ν=1

z

z − zν
.

Now for the points eiθ , 0 ≤ θ < 2π , with P(eiθ ) �= 0, we have

Re

(
eiθ P ′(eiθ )
P(eiθ )

)

=
n∑

ν=1

Re

(
eiθ

eiθ − zν

)

≥
n∑

ν=1

1

1 + |zν |

= n

1 + k
+ k

1 + k

n∑

ν=1

k − |zν |
k + k|zν |

≥ n

1 + k
+ k

1 + k

n∑

ν=1

1 − |zν |/k
1 + |zν |/k .

Since |zν |/k ≤ 1, ν = 1, 2, . . . , n, we get on using Lemma 2.5 for the points eiθ , 0 ≤ θ <

2π , with P(eiθ ) �= 0,

Re

(
eiθ P ′(eiθ )
P(eiθ )

)

≥ n

1 + k
+ k

1 + k
· 1 − ∏n

ν=1 |zν |/k
1 + ∏n

ν=1 |zν |/k
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= n

1 + k
+ k

1 + k
· 1 − |c0|/kn |cn |
1 + |c0|/kn |cn | ,

which is equivalent to (2.7). This completes the proof of Lemma 2.6. 
�

Lemma 2.7 If P(z) = ∑n
ν=0 cνzν ∈ Pn has all its zeros in |z| ≤ k, k > 0, then

|cn | >
m

kn
,

where m = min|z|=k |P(z)|.

Proof Since P(z) = ∑n
ν=0 cν zν has all its zeros in 0 < |z| ≤ k, then Q(z) = zn P (1/z) �= 0

for |z| < 1/k. We can assume without loss of generality that Q(z) has no zero on |z| = 1/k,
for otherwise the result holds trivially. Since Q(z) is analytic in |z| ≤ 1/k and has no zero in
|z| ≤ 1/k, by the Minimum Modulus Principle,

min|z|=1/k
|Q(z)| ≤ |Q(z)| for |z| ≤ 1

k
,

which implies

1

kn
min|z|=k

|P(z)| ≤ |Q(z)| for |z| ≤ 1

k
,

which in particular gives

m

kn
< |Q(0)| = |cn |.

This proves Lemma 2.7. 
�

Lemma 2.8 The function

x �→ S(x) = k2x + c

x + c
,

where k ≤ 1 and c > 0, is a non-increasing function for x ≥ 0.

Proof It is clear from

S′(x) = −c
(
1 − k2

)

(c + x)2
≤ 0.


�

3 Main results

In this section, we present our main results.
We begin by proving the following Turán-type inequality for the class of polynomials

having all zeros in |z| ≤ k, k ≥ 1, by obtaining a bound which involves the modulus of each
zero of the underlying polynomial, and at the same time our result sharpens (1.5), (1.6) and
several of the earlier related inequalities considerably.
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Theorem 3.1 If P(z) = ∑n
ν=0 cν zν = cn

∏n
ν=1(z − zν) is a polynomial of degree n ≥ 2,

having all its zeros in |z| ≤ k, k ≥ 1, then for 0 ≤ t ≤ 1, we have

max|z|=1
|P ′(z)| ≥ 2

1 + kn

⎧
⎨

⎩

[

1 + k − 1

2
St (k)

]

max|z|=1
|P(z)|

+ 1

2kn

[

kn − 1 − (k − 1)St (k)

]

tm

} n∑

ν=1

k

k + |zν | + |c1|ψ(k), (3.1)

where

St (k) = kn |cn | − |c0| − tm

kn |cn | + k|c0| − tm
, ψ(k) =

⎧
⎪⎨

⎪⎩

1 − 1

k2
, if n > 2,

1 − 1

k
, if n = 2,

and

m = min|z|=k
|P(z)|.

Equality in (3.1) holds for P(z) = zn + kn.

Proof First, we suppose that

P(z) =
n∑

ν=0

cνz
ν = cn

n∏

ν=1

(z − zν)

is a polynomial of degree n > 2. Recall that P(z) has all its zeros in |z| ≤ k, k ≥ 1, therefore,
all the zeros of

F(z) = P(kz) = cnk
n

n∏

ν=1

(
z − zν

k

)

lie in |z| ≤ 1. Since for all z on |z| = 1 for which F(z) �= 0, we have

zF ′(z)
F(z)

=
n∑

ν=1

z

z − (zν/k)
,

therefore,

Re

(
zF ′(z)
F(z)

)

=
n∑

ν=1

Re

(
z

z − (zν/k)

)

≥
n∑

ν=1

1

1 + |zν/k|

=
n∑

ν=1

k

k + |zν | ,

for all z on |z| = 1 for which F(z) �= 0.
This gives

∣
∣
∣
∣
zF ′(z)
F(z)

∣
∣
∣
∣ ≥

n∑

ν=1

k

k + |zν | ,
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for all z on |z| = 1 for which F(z) �= 0. Therefore

max|z|=1
|F ′(z)| ≥

n∑

ν=1

k

k + |zν | max|z|=1
|F(z)|, (3.2)

which is equivalent to

k max|z|=1
|P ′(kz)| ≥

n∑

ν=1

k

k + |zν | max|z|=k
|P(z)|. (3.3)

Since P ′(z) is a polynomial of degree n − 1 and k ≥ 1, and hence applying inequality (2.5)
of Lemma 2.3 to the polynomial P ′(z), we get

max|z|=1
|P ′(kz)| = max|z|=k

|P ′(z)| ≤ kn−1 max|z|=1
|P ′(z)| − (

kn−1 − kn−3) |c1|.

Using this and Lemma 2.2 in (3.3), we get for k ≥ 1 and 0 ≤ t ≤ 1,

kn

⎧
⎨

⎩
max|z|=1

|P ′(z)| −
(

1 − 1

k2

)

|c1|
⎫
⎬

⎭
≥ 2kn

1 + kn

{[

1 + k − 1

2
St (k)

]

max|z|=1
|P(z)|

+k − 1

2kn

[

kn−1 + kn−2 + · · · + k + 1 − St (k)

]

tm

⎫
⎬

⎭

n∑

ν=1

k

k + |zν | ,

which is equivalent to (3.1), and thus Theorem 3.1, in the case n > 2 is proved.
The proof of the theorem in the case n = 2 follows on the same lines as above except that

instead of inequality (2.5) of Lemma 2.3, we use (2.6) of the same lemma. 
�
If we do not have the knowledge of min|z|=k |P(z)| or t = 0, we get the following result

from Theorem 3.1 which represents a refinement of (1.5).

Corollary 3.1 If P(z) = ∑n
ν=0 cνzν = cn

∏n
ν=1(z − zν) is a polynomial of degree n ≥ 2,

having all its zeros in |z| ≤ k, k ≥ 1, then

max|z|=1
|P ′(z)| ≥

⎧
⎨

⎩

2

1 + kn
+ (kn |cn | − |c0|)(k − 1)

(1 + kn)(kn |cn | + k|c0|)

⎫
⎬

⎭

n∑

ν=1

k

k + |zν | max|z|=1
|P(z)| + |c1|ψ(k),

(3.4)

where ψ(k) is as defined in Theorem 3.1. Equality in (3.4) holds for P(z) = zn + kn.

Remark 3.1 Recall that the polynomial P(z) has all its zeros in |z| ≤ k, k ≥ 1. If P(z) has
a zero on |z| = k, then m = min|z|=k |P(z)| = 0 and in this case Theorem 3.1 reduces to
Corollary 3.1. Henceforth, we suppose that P(z) has all its zeros in |z| < k, k ≥ 1. Let
H(z) = P(kz) and G(z) = znH (1/z) = zn P (k/z), then all the zeros of G(z) lie in |z| > 1
and |H(z)| = |G(z)| for |z| = 1. This gives m ≤ |P(kz)| for |z| = 1, and since m/P(kz) is
not a constant, it follows by the Minimum Modulus Principle, that

∣
∣
∣
∣
∣
zn P

(
k

z

)∣∣
∣
∣
∣
= |P(kz)| ≥ m for |z| ≤ 1.

Replacing z by 1/z, it implies that

|P(kz)| ≥ m|z|n for |z| ≥ 1,
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or

|P(z)| ≥ m
∣
∣
∣
z

k

∣
∣
∣
n

for |z| ≥ k. (3.5)

Consider the polynomial F(z) = P(z) + λm, where λ ∈ C with |λ| ≤ 1, then all the zeros
of F(z) lie in |z| ≤ k. Because, if for some z = z0 with |z0| > k, we have

F(z0) = P(z0) + λm = 0,

then

|P(z0)| = |λm| ≤ m < m
∣
∣
∣
z0
k

∣
∣
∣
n
,

which is a contradiction to (3.5). Hence all the zeros of P(z) + λm lie in |z| ≤ k, k ≥ 1 for
every λ with |λ| ≤ 1. If z1, z2, . . . , zn, are the zeros of

P(z) + λm = (c0 + λm) +
n∑

ν=1

cνz
ν,

then
∣
∣
∣
∣
c0 + λm

cn

∣
∣
∣
∣ = |z1z2 · · · zn | ≤ kn . (3.6)

If in (3.6), we choose the argument of λ suitably, we get

|c0| + |λ|m ≤ kn |cn |. (3.7)

If we take |λ| = t in (3.7), so that 0 ≤ t ≤ 1, we get |c0| + tm ≤ kn |cn |. Using this, it easily
follows that

kn |cn | − |c0| − tm

kn |cn | + k|c0| − tm
= St (k) ≥ 0. (3.8)

Also, by Lemma 2.8 (see Sect. 2), we have |cn | ≥ m/kn , which further implies that

max|z|=1
|P(z)| ≥ |cn | ≥ m

kn
≥ tm

kn
, 0 ≤ t ≤ 1.

Using this and k ≥ 1, one can easily check that

φ(x) =
(

1 + k − 1

2
x

)

max|z|=1
|P(z)| + k − 1

2kn

(

kn−1 + kn−2 + · · · + k + 1 − x

)

tm,

is an increasing function of x . Thus, from Theorem 3.1, we get the following refinement of
(1.6).

Corollary 3.2 If P(z) = ∑n
ν=0 cν zν = cn

∏n
ν=1(z − zν) is a polynomial of degree n ≥ 2

having all its zeros in |z| ≤ k, k ≥ 1, then for 0 ≤ t ≤ 1, we have

max|z|=1
|P ′(z)| ≥

{
2

1 + kn
max|z|=1

|P(z)| + 1

kn
· k

n − 1

kn + 1
tm

} n∑

ν=1

k

k + |zν | + |c1|ψ(k), (3.9)

whereψ(k) and m are as defined in Theorem 3.1. Equality in (3.9) holds for P(z) = zn +kn.

Our next result is a polar derivative generalization of Theorem 3.1, which also provides a
strengthening of (1.13).
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Theorem 3.2 Let P(z) = ∑n
ν=0 cν zν = cn

∏n
ν=1(z − zν) be a polynomial of degree n ≥ 2,

having all its zeros in |z| ≤ k, k ≥ 1. Then for every complex number β with |β| ≥ k, and
0 ≤ t ≤ 1, we have

max|z|=1
|Dβ P(z)| ≥ 2

|β| − k

1 + kn

⎧
⎨

⎩

[

1 + k − 1

2
St (k)

]

max|z|=1
|P(z)|

+ 1

2kn

[

kn − 1 − (k − 1)St (k)

]

tm

⎫
⎬

⎭

n∑

ν=0

k

k + |zν |
+ |nc0 + βc1|ψ(k), (3.10)

where St (k), ψ(k) and m are defined in Theorem 3.1. Equality in (3.10) holds for P(z) =
zn + kn.

Proof Let F(z) = P(kz), where P(z) is a polynomial of degree n > 2 having all its zeros
in |z| ≤ k, k ≥ 1. Therefore, all the zeros of F(z) lie in |z| ≤ 1, hence by (3.2), we get

max|z|=1
|F ′(z)| ≥

n∑

ν=1

k

k + |zν | max|z|=1
|F(z)|. (3.11)

Let H(z) = zn F (1/z). Then it can be easily verified that

|H ′(z)| = |nF(z) − zF ′(z)| for |z| = 1. (3.12)

The polynomial H(z) has all its zeros in |z| ≥ 1 and |H(z)| = |F(z)| for |z| = 1, therefore
on applying Lemma 2.4 for k = 1 with P(z) replaced by F(z) and Q(z) by H(z), we get

|H ′(z)| ≤ |F ′(z)| for |z| = 1. (3.13)

Now, noting that by hypothesis, we have |β|/k ≥ 1, hence on using definition of polar
derivative of a polynomial, we get

∣
∣Dβ/k F(z)

∣
∣ =

∣
∣
∣
∣nF(z) + β

k
F ′(z) − zF ′(z)

∣
∣
∣
∣

≥
∣
∣
∣
∣
β

k

∣
∣
∣
∣ |F ′(z)| − |nF(z) − zF ′(z)|,

which on using (3.12) and (3.13), gives

max|z|=1

∣
∣Dβ/k F(z)

∣
∣ ≥ |β| − k

k
max|z|=1

|F ′(z)|. (3.14)

Using (3.11) in (3.14) and replace F(z) by P(kz), we get

max|z|=1

∣
∣Dβ/k P(kz)

∣
∣ ≥ |β| − k

k

n∑

ν=1

k

k + |zν | max|z|=1
|P(kz)|,

which implies

max|z|=1

∣
∣
∣
∣nP(kz) +

(
β

k
− z

)

kP ′(kz)
∣
∣
∣
∣ ≥ |β| − k

k

n∑

ν=1

k

k + |zν | max|z|=k
|P(z)|.
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Thus on using the fact that

max|z|=1

∣
∣
∣
∣nP(kz) +

(
β

k
− z

)

kP ′(kz)
∣
∣
∣
∣ = max|z|=k

|Dβ P(z)|,

gives

max|z|=k
|Dβ P(z)| ≥ |β| − k

k

n∑

ν=1

k

k + |zν | max|z|=k
|P(z)|. (3.15)

For |β| = k, the coefficient of zn−1 in Dβ P(z) vanishes if β = z1 = z2 = · · · = zn =
keiθ , that is, when P(z) is of the form (z − β)n , for which inequality (3.10) is obvious.
Therefore, let |β| > k, and since P(z) is of degree n > 2, and so the polynomial Dβ P(z) is
of degree n − 1, where n − 1 ≥ 2, and hence on applying inequality (2.5) of Lemma 2.3 to
the polynomial Dβ P(z), we get for k ≥ 1,

max|z|=k

∣
∣Dβ P(z)

∣
∣ ≤ kn−1 max|z|=1

∣
∣Dβ P(z)

∣
∣ − (kn−1 − kn−3)

∣
∣Dβ P(0)

∣
∣,

or

max|z|=k

∣
∣Dβ P(z)

∣
∣ ≤ kn−1 max|z|=1

∣
∣Dβ P(z)

∣
∣ − (kn−1 − kn−3) |nc0 + βc1| . (3.16)

On using (3.16) and Lemma 2.2 in (3.15), we get

kn−1
{

max|z|=1

∣
∣Dβ P(z)

∣
∣ −

(

1 − 1

k2

)

|nc0 + βc1|
}

≥ max|z|=k

∣
∣Dβ P(z)

∣
∣

≥ 2kn(|β| − k)

k(1 + kn)

n∑

ν=1

k

k + |zν |

⎧
⎨

⎩

[

1 + k − 1

2
St (k)

]

max|z|=1
|P(z)|

+k − 1

2kn

[

kn−1 + kn−2 + · · · + k + 1 − St (k)

]

tm

⎫
⎬

⎭
,

which is equivalent to (3.10) for n > 2.
For the case n = 2, the proof follows along the same lines as that of n > 2, but instead of

(2.5) of Lemma 2.3, we use (2.6) of the same lemma. This proves Theorem 3.2 completely.

�

Remark 3.2 If we divide both sides of (3.10) by |β| and let |β| → +∞, we recover (3.1).
If we use the same arguments as in Remark 3.1, we get from Theorem 3.2 the following
refinement of (1.13).

Corollary 3.3 Let P(z) = ∑n
ν=0 cν zν = cn

∏n
ν=1(z − zν) be a polynomial of degree n ≥ 2,

having all its zeros in |z| ≤ k, k ≥ 1. Then for every complex number β with |β| ≥ k, and
0 ≤ t ≤ 1, we have

max|z|=1
|Dβ P(z)| ≥ (|β| − k)

n∑

ν=1

k

k + |zν |
[

2

1 + kn
max|z|=1

|P(z)| + 1

kn
· k

n − 1

kn + 1
tm

]

+ |nc0 + βc1|ψ(k), (3.17)

where ψ(k) and m are defined in Theorem 3.1. Equality in (3.17) holds for P(z) = zn + kn.
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We now turn to study some integral inequalities of Turán-type for the class of polyno-
mials having all zeros in |z| ≤ k, k ≤ 1. In this direction, we first establish the following
generalization of Theorem A.

Theorem 3.3 If P(z) = ∑n
ν=0 cν zν ∈ Pn has all its zeros in |z| ≤ k, k ≤ 1, then for every

β ∈ C with |β| ≥ k and for each r > 0,
{∫ 2π

0
|Dβ P(eiθ )|rdθ

}1/r

≥ n(|β| − L)

1 + k

{

1 + k

n
· k

n |cn | − |c0|
kn |cn | + |c0|

}{∫ 2π

0
|P(eiθ )|rdθ

}1/r

,

(3.18)

where L is defined as in (1.12), i.e.,

L = nk2|cn | + |cn−1|
n|cn | + |cn−1| .

Proof If Q(z) = zn P (1/z), then P(z) = znQ (1/z). It is easy to verify that for |z| = 1,

|Q′(z)| = |nP(z) − zP ′(z)|. (3.19)

Using the definition of polar derivative of a polynomial P ∈ Pn with respect to complex
number β with |β| ≥ k ≥ L , we have

∣
∣Dβ P(z)

∣
∣ =|nP(z) + (β − z)P ′(z)|
≥|β| ∣∣P ′(z)

∣
∣ − ∣

∣nP(z) − zP ′(z)
∣
∣, (3.20)

which gives by using (3.19) for |z| = 1, that
∣
∣Dβ P(z)

∣
∣ ≥|β| ∣∣P ′(z)

∣
∣ − ∣

∣Q′(z)
∣
∣

≥(|β| − L)|P ′(z)|. (by Lemma 2.4) (3.21)

For any r > 0 and 0 ≤ θ < 2π , from (3.21) we have
∣
∣Dβ P(eiθ )

∣
∣r ≥ (|β| − L)r

∣
∣P ′(eiθ )

∣
∣r ,

which equivalently gives,

{∫ 2π

0
|Dβ P(eiθ )|r dθ

}1/r

≥ (|β| − L)

{∫ 2π

0
|P ′(eiθ )|r dθ

}1/r

. (3.22)

By Lemma 2.6, we have for each z on |z| = 1 at which P(z) �= 0,

|P ′(z)| ≥ n

1 + k

{

1 + k

n
· k

n |cn | − |c0|
kn |cn | + |c0|

}

|P(z)|. (3.23)

Further, it is evident that this inequality follows trivially for those z on |z| = 1 at which
P(z) = 0 as well. Also, from (3.23), we have for 0 ≤ θ < 2π and r > 0,

{∫ 2π

0
|P ′(eiθ )|r dθ

}1/r

≥ n

1 + k

{

1 + k

n
· k

n |cn | − |c0|
kn |cn | + |c0|

}{∫ 2π

0
|P(eiθ )|r dθ

}1/r

.

(3.24)

The above inequality (3.24) in conjunctionwith (3.22) yields (3.18). This completes the proof
of Theorem 3.3. 
�
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Remark 3.3 If we take k = 1 in (3.18), we recover (1.16). Thus, Theorem 3.3 generalizes
Theorem A. Note that for 0 < r < 1 we work with quasi-norm.

Remark 3.4 Since P(z) = ∑n
ν=0 cνzν has all its zeros in |z| ≤ k, k ≤ 1, then

1

n

∣
∣
∣
∣
cn−1

cn

∣
∣
∣
∣ ≤ k,

which can also be taken as equivalent to

L = nk2|cn | + |cn−1|
n|cn | + |cn−1| ≤ k. (3.25)

Hence from Theorem 3.3, we get the following result.

Corollary 3.4 If P(z) = ∑n
ν=0 cνzν ∈ Pn has all its zeros in |z| ≤ k, k ≤ 1, then for every

β ∈ C with |β| ≥ k and for each r > 0,
{∫ 2π

0

∣
∣Dβ P(eiθ )

∣
∣r dθ

}1/r

≥ n(|β| − k)

1 + k

{

1 + k

n
· k

n |cn | − |c0|
kn |cn | + |c0|

}{∫ 2π

0

∣
∣P(eiθ )

∣
∣r dθ

}1/r

.

(3.26)

If we divide both sides of inequality (3.26) by |β| and let |β| → +∞, we get the following
result:

Corollary 3.5 If P(z) = ∑n
ν=0 cν zν ∈ Pn has all its zeros in |z| ≤ k, k ≤ 1, then for each

r > 0,
{∫ 2π

0

∣
∣P ′(eiθ )

∣
∣r dθ

}1/r

≥ n

1 + k

{

1 + k

n
· k

n |cn | − |c0|
kn |cn | + |c0|

}{∫ 2π

0

∣
∣P(eiθ )

∣
∣r dθ

}1/r

.

(3.27)

If we take k = 1 in (3.27), we get Lr -norm version of (1.7). Further, letting r → ∞ in
(3.26), we get the following refinement of (1.9).

Corollary 3.6 If P(z) = ∑n
ν=0 cνzν ∈ Pn has all its zeros in |z| ≤ k, k ≤ 1, then for every

β ∈ C with |β| ≥ k,

max|z|=1

∣
∣Dβ P(z)

∣
∣ ≥ n(|β| − k)

1 + k

{

1 + k

n
· k

n |cn | − |c0|
kn |cn | + |c0|

}

max|z|=1
|P(z)|. (3.28)

Remark 3.5 Since P(z) = ∑n
ν=0 cνzν �= 0 in |z| > k, k ≤ 1, and if z1, z2, . . . , zn are the

zeros of P(z), then
∣
∣
∣
∣
c0
cn

∣
∣
∣
∣ = |z1z2 · · · zn | = |z1||z2| · · · |zn | ≤ kn .

In view of this fact inequality (3.28) refines (1.9). Furthermore, (3.28) reduces to (1.14) for
k = 1.

As an application of Theorem 3.3, we prove the following more general result. One
can observe that the above inequality (3.18) will be a consequence of a more fundamental
inequality presented by the following theorem.
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Theorem 3.4 If P(z) = ∑n
ν=0 cν zν ∈ Pn having all its zeros in |z| ≤ k, k ≤ 1, then for

every β ∈ C with |β| ≥ k, 0 ≤ t ≤ 1 and for each r > 0,
{∫ 2π

0

(
∣
∣Dβ P(eiθ )

∣
∣ − mnt |β|

kn

)r

dθ

}1/r

≥ n(|β| − A(t))

1 + k

{

1 + k

n
· k

n |cn | − tm − |c0|
kn |cn | − tm + |c0|

}{∫ 2π

0

(
∣
∣P(eiθ )

∣
∣ − tm

kn

)r

dθ

}1/r

,

(3.29)

where

A(t) = n
(|cn | − tm

kn
)
k2 + |cn−1|

n
(|cn | − tm

kn
) + |cn−1| and m = min|z|=k

|P(z)|.

Proof Since P ∈ Pn and P(z) has all its zeros in |z| ≤ k, k ≤ 1. If P(z) has a zero on
|z| = k, then m = min|z|=k |P(z)| = 0 and the result follows from Theorem 3.3 in this
case. Henceforth, we assume that all the zeros of P(z) lie in |z| < k, so that m > 0. Now
m ≤ |P(z)| for |z| = k, therefore, if μ is any complex number such that |μ| < 1, then

∣
∣
∣
∣mμ

( z

k

)n
∣
∣
∣
∣ < |P(z)| for |z| = k.

Since, all the zeros of P(z) lie in |z| < k, it follows by Rouché’s theorem that all the zeros
of T (z) = P(z) − mμ(z/k)n also lie in |z| < k.

Applying Theorem 3.3 to T (z), we have for |β| ≥ k ≥ L ′, 0 ≤ θ < 2π and for every
r > 0,

{∫ 2π

0

∣
∣
∣DβT (eiθ )

∣
∣
∣
r
dθ

}1/r

≥ n
(|β| − L ′)

1 + k

(

1 + k

n
· k

n
∣
∣cn − μm

kn
∣
∣ − |c0|

kn
∣
∣cn − μm

kn
∣
∣ + |c0|

){∫ 2π

0

∣
∣
∣T (eiθ )

∣
∣
∣
r
dθ

}1/r

,

(3.30)

where

L ′ = n
∣
∣cn − μm

kn
∣
∣ k2 + |cn−1|

n
∣
∣cn − μm

kn
∣
∣ + |cn−1| .

Replacing T (eiθ ) by P(eiθ ) − μmeinθ /kn and using the fact that

DβT (eiθ ) = Dβ

(

P(eiθ ) − μmeinθ

kn

)

= Dβ P(eiθ ) − 1

kn
μmnβei(n−1)θ ,

we have from (3.30) for |β| ≥ k, 0 ≤ θ < 2π and for every r > 0,
{∫ 2π

0

∣
∣
∣
∣Dβ P(eiθ ) − 1

kn
μmnβei(n−1)θ

∣
∣
∣
∣

r

dθ

}1/r

≥ n
(|β| − L ′)

1 + k

(

1 + k

n
· k

n
∣
∣cn − μm

kn
∣
∣ − |c0|

kn
∣
∣cn − μm

kn
∣
∣ + |c0|

){∫ 2π

0

∣
∣
∣
∣P(eiθ ) − 1

kn
μmeinθ

∣
∣
∣
∣

r

dθ

}1/r

.

(3.31)

For every μ ∈ C with |μ| < 1, we have
∣
∣
∣
∣cn − μm

kn

∣
∣
∣
∣ ≥ |cn | − |μ|m

kn
> |cn | − m

kn
, (3.32)
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and |cn | > m/kn by Lemma 2.7. Now, combining (3.32) and Lemma 2.8, we have for every
|μ| < 1,

L ′ = n
∣
∣cn − μm

kn
∣
∣ k2 + |cn−1|

n
∣
∣cn − μm

kn
∣
∣ + |cn−1| ≤

n
(
|cn | − |μ|m

kn

)
k2 + |cn−1|

n
(
|cn | − |μ|m

kn

)
+ |cn−1|

= A(|μ|). (3.33)

Also, since the function

x �→ knx − |c0|
knx + |c0| (x ≥ 0),

is a non-decreasing function of x , we get

kn
∣
∣cn − μm

kn
∣
∣ − |c0|

kn
∣
∣cn − μm

kn
∣
∣ + |c0| ≥ kn |cn | − |μ|m − |c0|

kn |cn | − |μ|m + |c0| . (3.34)

On using (3.33) and (3.34) in (3.31), we get for |β| ≥ k, 0 ≤ θ < 2π , and for every r > 0,
{∫ 2π

0

∣
∣
∣
∣Dβ P(eiθ ) − 1

kn
μmnβei(n−1)θ

∣
∣
∣
∣

r

dθ

}1/r

≥ n (|β| − A(|μ|))
1 + k

⎧
⎨

⎩
1 + k

n
· k

n |cn | − |μ|m − |c0|
kn |cn | − |μ|m + |c0|

⎫
⎬

⎭

×
{∫ 2π

0

(
∣
∣P

(
eiθ

)∣
∣ − 1

kn
|μ|m

)r

dθ

}1/r

. (3.35)

It is a simple consequence of Laguerre theorem (cf. [14, p. 52]) on the polar derivative of a
polynomial that for every β, with |β| ≥ k, the polynomial

Dβ

(

P(z) −
(
z

k

)n

μm

)

= Dβ P(z) − 1

kn
μmnβzn−1 (3.36)

has all its zeros in |z| < k, k ≤ 1. This implies

∣
∣Dβ P(z)

∣
∣ ≥ 1

kn
mn|β||z|n−1 for |z| ≥ k. (3.37)

Because if (3.37) is not true, then there is a point z = z0 with |z0| ≥ k, such that

∣
∣Dβ P(z0)

∣
∣ <

∣
∣
∣
∣
∣

mnβzn−1
0

kn

∣
∣
∣
∣
∣
.

We choose

μ = knDβ P(z0)

mnβzn−1
0

,

so that |μ| < 1, and with this choice of μ, from (3.36), we get

Dβ

(

P(z0) −
(
z0
k

)n

μm

)

= 0,

where |z0| ≥ k, which contradicts the fact that all the zeros of

Dβ

(

P(z) −
(
z

k

)n

μm

)
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lie in |z| < k, k ≤ 1, for every μ with |μ| < 1.
Now choosing the argument of μ suitably on the left hand side of (3.35) such that

∣
∣
∣
∣Dβ P(z) − 1

kn
μmnβzn−1

∣
∣
∣
∣ = |Dβ P(z)| − 1

kn
mn|μ||β| for |z| = 1,

which is possible by (3.37), we get for |β| ≥ k, |μ| < 1, 0 ≤ θ < 2π , and for every r > 0,
{∫ 2π

0

(
∣
∣Dβ P(eiθ )

∣
∣ − 1

kn
mn|μ||β|

)r

dθ

}1/r

≥ n (|β| − A(|μ|))
1 + k

{

1 + k

n
· k

n |cn | − |μ|m − |c0|
kn |cn | − |μ|m + |c0|

}{∫ 2π

0

(
∣
∣P(eiθ )

∣
∣ − 1

kn
|μ|m

)r

dθ

}1/r

.

(3.38)

For μ with |μ| = 1, the above inequality follows by continuity. Putting |μ| = t in (3.38), we
get

{∫ 2π

0

(
∣
∣Dβ P(eiθ )

∣
∣ − 1

kn
mnt |β|

)r

dθ

}1/r

≥ n (|β| − A(t))

1 + k

{

1 + k

n
· k

n |cn | − tm − |c0|
kn |cn | − tm + |c0|

}{ 2π∫

0

(
∣
∣P

(
eiθ

)∣
∣ − 1

kn
tm

)r

dθ

}1/r

,

where 0 ≤ t ≤ 1. This completes the proof of Theorem 3.4. 
�

Remark 3.6 Recall that P(z) = ∑n
ν=0 cν zν �= 0 for |z| > k, k ≤ 1. Here, we first show that

A(t) = n
(|cn | − tm

kn
)
k2 + |cn−1|

n
(|cn | − tm

kn
) + |cn−1| ≤ k, (3.39)

for 0 ≤ t ≤ 1. We can assume without loss of generality that P(z) has no zeros on |z| = k,
for otherwise (3.39) holds trivially by (3.25). Now, as in the proof of Theorem 3.4, we have
for every μ with |μ| < 1, the polynomial

T (z) = P(z) − mμ
( z

k

)n =
(
cn − μm

kn

)
zn +

n−1∑

ν=0

cν z
ν

has all its zeros in |z| < k, k ≤ 1, hence on applying (3.25) gives

n
∣
∣cn − μm

kn
∣
∣ k2 + |cn−1|

n
∣
∣cn − μm

kn
∣
∣ + |cn−1| ≤ k. (3.40)

For every μ ∈ C with |μ| < 1, we have

∣
∣
∣cn − μm

kn

∣
∣
∣ ≥ |cn | − |μ|m

kn
> |cn | − m

kn

and |cn | > m/kn by Lemma 2.7. Therefore, it is possible to choose the argument of μ

suitably, so that

∣
∣
∣cn − μm

kn

∣
∣
∣ = |cn | − |μ|m

kn
,
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we get from (3.40), that

n
(
|cn | − |μ|m

kn

)
k2 + |cn−1|

n
(
|cn | − |μ|m

kn

)
+ |cn−1|

≤ k. (3.41)

For μ with |μ| = 1, the above inequality follows by continuity.
The inequality (3.39) follows by taking |μ| = t in (3.41), so that 0 ≤ t ≤ 1.

Remark 3.7 Letting r → +∞ in (3.29), we get for |β| ≥ k, and 0 ≤ t ≤ 1,

max|z|=1

∣
∣Dβ P(z)

∣
∣ ≥ n

|β| − A(t)

1 + k
max|z|=1

|P(z)| + mnt

kn
· |β|k + A(t)

1 + k

+ k
|β| − A(t)

1 + k
· k

n |cn | − tm − |c0|
kn |cn | − tm + |c0|

(

max|z|=1
|P(z)| − tm

kn

)

,

which is equivalent to

max|z|=1

∣
∣Dβ P(z)

∣
∣ ≥ n

|β| − k

1 + k
max|z|=1

|P(z)| + n

( |β| + 1

kn−1(1 + k)

)

tm

+ n
k − A(t)

1 + k
max|z|=1

|P(z)| + n
A(t) − k

kn(1 + k)
tm

+ k
|β| − A(t)

1 + k
· k

n |cn | − tm − |c0|
kn |cn | − tm + |c0|

(

max|z|=1
|P(z)| − tm

kn

)

. (3.42)

It is easy to show that

n
k − A(t)

1 + k
max|z|=1

|P(z)| + n
A(t) − k

kn(1 + k)
tm ≥ 0,

which is equivalent to showing

n
k − A(t)

1 + k
max|z|=1

|P(z)| ≥ n

kn
· k − A(t)

1 + k
tm.

In view of (3.39), the above inequality becomes equivalent to

max|z|=1
|P(z)| ≥ tm

kn
,

which is true by Lemma 2.7, and the fact that

max|z|=1
|P(z)| = max|z|=1

∣
∣
∣
∣

n∑

ν=0

cν z
ν

∣
∣
∣
∣ ≥ |cn |.

Hence, inequality (3.42) represents an interesting refinement of the following result due to
Dewan et al. [6].

Theorem C If P ∈ Pn and P(z) has all its zeros in |z| ≤ k, k ≤ 1, then for every β ∈ C with
|β| ≥ k, we have

max|z|=1

∣
∣Dβ P(z)

∣
∣ ≥ n

|β| − k

1 + k
max|z|=1

|P(z)| + n
|β| + 1

kn−1(1 + k)
min|z|=k

|P(z)| .
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Fig. 1 Graphics of the functions θ �→ P
(
eiθ

)
(left) and θ �→ P ′(eiθ

)
(right) for 0 ≤ θ < 2π

Fig. 2 (Left) The function k �→ ϕ(t, k),
√
3 ≤ k ≤ 16, for t = 0, t = 1/2, and t = 1; (Right) Comparison of

the differences k �→ 
(k) in the inequalities (1.5), (1.6), and (3.9) and (3.1) for t = 1

Remark 3.8 It is important tomention that the bound obtained in Theorem3.4 is optimalwhen
t = 1. However, the parameter t plays a vital role for making Theorem 3.4 more general,
and to get different bounds from it by simply giving different values to t while varying in the
closed unit interval [0, 1] and without changing the hypothesis of this theorem. For example,
for t = 0 (without assuming that P(z) has a zero on |z| = k), we get (3.18).

4 Numerical examples

As an illustration of the obtained results, in this section we consider the following two
examples.

Example 4.1 Let P(z) = z4 −2z3 +6z−9, with all zeros
{
−√

3,
√
3, 1−√

2 i, 1+√
2 i

}

on the circle |z| = √
3, so that Theorem 3.1 holds for k ≥ √

3.
On the unit circle we have

|P(eiθ )| = √
2[61 − 56 cos(θ) − 12 cos(2θ) + 24 cos(3θ) − 9 cos(4θ)]

and

|P ′(eiθ )| = √
8[11 − 6 cos(θ) − 9 cos(2θ) + 6 cos(3θ)]

and their graphics for 0 ≤ θ < 2π are presented in Fig. 1.
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Since

M = max|z|=1
|P(z)| = max

0≤θ<2π

∣
∣P

(
eiθ

)∣
∣ = 16.0217581269879 . . .

and

M1 = max|z|=1
|P ′(z)| = max

0≤θ<2π

∣
∣P ′(eiθ

)∣
∣ = 14.199691411439 . . . ,

as well as m = min|z|=k |P(z)| = P(k) = (k2 − 3)
(
(k − 1)2 + 2

)
, k ≥ √

3, we can consider
the difference between the left and the right hand side in (3.9)

ϕ(t, k) = M1 −
{

2M

1 + k4
+ 1

k4
· k

4 − 1

k4 + 1
(k2 − 3)

(
(k − 1)2 + 2

)
t

} 4∑

ν=1

k

k + |zν | − 6

(

1 − 1

k2

)

,

Graphics of the functions k �→ ϕ(t, k) for t = 0, 1/2, 1 are presented in Fig. 2 (left).
In the same figure (right) we show the difference k �→ 
(k) between the left and the

right hand side in the inequalities (1.5) given by Aziz [1] and in (1.6) given by Dewan and
Upadhye [5], as well as in the inequalities (3.9) for (t = 1) and in (3.1) from Theorem 3.1
for t = 1.

Example 4.2 Let P(z) = z4 + 4, with all zeros
{
1− i, 1+ i, − 1− i, − 1+ i

}
on the circle

|z| = √
2, so that Theorem 3.2 holds for |z| ≥ √

2. We take β ∈ C with |β| = 8. Since, in
this case,

M = max|z|=1
|P(z)| = 5 and Mβ = max|z|=1

|Dβ P(z)| = max|z|=1
|4(4 + z3β)| = 4(4 + |β|) = 48,

we consider the difference between Mβ and the right hand side in the inequality (3.10),

ψ(t, k) = Mβ − 2
8 − k

k4 + 1

{(

1 + k − 1

2
St (k)

)

M + 1

2k4
(
k4 − 1 − (k − 1)St (k)

)
m t

}
4k√
2 + k

− 16

(

1 − 1

k2

)

,

where c0 = 4, c1 = c2 = c3 = 0, c4 = 1,

m = min|z|=k
|P(z)| = k4 − 4, St (k) = (k4 − 4)(1 − t)

k4(1 − t) + 4(k + t)
,

4∑

ν=0

k

k + |zν | = 4k√
2 + k

.

In Fig. 3 we present the difference
(k) between the left and right sides in the inequalities
(1.10), (1.13) and (3.10) for t = 0, t = 1/2 and t = 1, i.e.,


(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Mβ − 4(|β| − k)

k4 + 1
M, Inequality (1.10),

Mβ − 2(|β| − k)

k4 + 1

[

M + 1

2k4
(k4 − 1)m

]
4k√
2 + k

, Inequality (1.13),

ψ(0, k), Inequality (3.10),
ψ(1/2, k), Inequality (3.10),
ψ(1, k), Inequality (3.10).

Among these considered inequalities, from Fig. 3 we see that (3.10) is the best one obtained
by Theorem 3.2 for t = 1.

Wemention here that some graphical illustrations can be also done for the Lr -inequalities.
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Fig. 3 Graphics k �→ 
(k) for
√
2 ≤ k ≤ |β| = 8 in different inequalities

5 Conclusions

In the past few years, a series of papers related to Turán-type inequalities for algebraic poly-
nomials has been published and significant advances have been achieved. In this paper, we
continue the study of this type of inequalities for polynomials, following up on a study started
by various authors in the recent past. More precisely, some new inequalities of Turán-type are
established that relate the supremum-norm of a univariate complex coefficient polynomial
and its derivative on the unit disk. Besides, some classical Turán-type inequalities that relate
the supremum-norm of the derivative and the polynomial on the unit disk are generalized
to the Lr -norm of the polar derivative and the polynomial. Our results also include several
interesting generalizations and refinements of some integral inequalities for algebraic poly-
nomials. Two numerical examples are given in order to graphically illustrate and compare
the obtained inequalities with some classical results.
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9. Gardner, R.B., Govil, N.K., Milovanović, G.V.: Extremal Problems and Inequalities of Markov-Bernstein
Type for Algebraic Polynomials, Mathematical Analysis and Its Applications. Elsevier/Academic Press,
London (2022)

10. Govil, N.K.: On the derivative of a polynomial. Proc. Am. Math. Soc. 41, 543–546 (1973)
11. Govil, N.K., McTume, G.N.: Some generalizations involving the polar derivative for an inequality of Paul

Turán. Acta Math. Hungar. 104, 115–126 (2004)
12. Hussain, A., Mir, A., Ahmad, A.: On Bernstein-type inequalities for polynomials involving the polar

derivative. J. Classical Anal. 16, 9–15 (2020)
13. Malik, M.A.: On the derivative of a polynomial. J. Lond. Math. Soc. 1, 57–60 (1969)
14. Marden, M.: Geometry of Polynomials, Mathematical Surveys, vol. 3. American Mathematical Society,

Providence (1966)
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