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Introduction

In the realm of complex analysis, the argument principle establishes a connection between

the difference in the number of zeros and poles and the closed integral of a logarithmic

derivative of an analytic function. It is a consequence of the residue theorem. It connects

the winding number of a curve with the number of zeros and poles inside the curve.

This is useful for applications (mathematical and otherwise) where we want to know

the location of zeros and poles. The argument principle provides a tool in the form of

Rouche’s theorem to see how the number of zeros of analytic functions remains constant

under small perturbations. We also look at a very important theorem in complex analysis,

the Fundamental Theorem of Algebra and prove it using the Argument Principle. In

addition, some more important applications are discussed in this project.
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Chapter 1

Basic Notations and Preliminaries

In this chapter, we give some basic concepts and preliminaries which will be helpful for

the reader to understand the subsequent chapter.

Section 1.1

Important Definitions

Differentiable functions: If f (z) is single-valued in some region R of the z plane, the

derivative of f (z) is defined as

f ′(z) = lim
∆z→0

f (z+∆z)− f (z)
∆z

provided that the limit exists independent of the manner in which ∆z → 0. In such a case,

we say that f (z) is differentiable at z.

Analytic functions: If the derivative f ′(z) exists at all points z of a region R, then f (z)

is said to be analytic in R and is referred to as an analytic function in R or a function

analytic in R. The terms regular and holomorphic are sometimes used as synonyms for

analytic.
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1.1 Important Definitions

A function f (z) is said to be analytic at a point z0 if there exists a neighborhood

| z− z0 |< δ , at all points of which f ′(z) exists.

Entire Functions: A function that is analytic everywhere in the finite plane [i.e. every-

where except at ∞] is called an entire function or integral function. The functions ez, sinz,

cosz are entire functions.

Meromorphic Functions: A function that is analytic everywhere in the finite plane ex-

cept at a finite number of poles is called a meromorphic function.

Simply and Multiply Connected Domain: A pathwise-connected domain is said to be

simply connected (also called 1-connected) if any simple closed curve can be shrunk to

a point continuously in the set. If the domain is connected but not simply, it is said to be

multiply connected.

Jordan Curve: Any continuous, closed curve that does not intersect itself and may or

may not have a finite length, is called a Jordan curve.

Jordan Curve Theorem: A Jordan curve divides the plane into two regions having the

curve as a common boundary. That region, which is bounded [i.e., is such that all points

of it satisfy |z|< M where M is some positive constant], is called the interior or inside of

the curve, while the other region is called the exterior or outside of the curve.

Winding number: The winding number of a point with respect to a closed curve is an

integer that represents the number of times the curve winds around the point in a coun-

terclockwise direction. It indicates how many times the function evaluates to zero at that

point.

Cauchy’s Integral Theorem: Let f (z) be analytic inside and on a simple closed curve C

and let f ′(z) be continuous there. Then,∫
C

f (z)dz = 0.

Cauchy–Goursat Theorem: Let f (z) be analytic in a region R and on its boundary C.

Then ∫
C

f (z)dz = 0.

3



1.2 Laurent’s Theorem

This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s

theorem, is valid for both simply and multiply-connected regions. It was first proved by

use of Green’s theorem with the added restriction that f (z) be continuous in R. However,

Goursat gave a proof which removed this restriction. For this reason, the theorem is some-

times called the Cauchy–Goursat theorem when one desires to emphasize the removal of

this restriction.

Section 1.2

Laurent’s Theorem

Statement: Let f (w) be analytic in the ring-shaped region between and on the two con-

centric circles C1 =| w−a |= r1 and C2 =| w−a |= r2 i.e. analytic for r1 ≤| w−a |≤ r2.

Then for any point z in the ring-shaped region, f (z) = ∑
∞
n=0 an(z−a)n+∑

∞
n=1 bn(z−a)−n

The importance of Laurent’s Theorem is due to the fact that it enables us to classify vari-

ous types of singularities of the function f (z) as follows:

Types of singularities

The first series in the Laurent expansion of f (z) i.e. ∑
∞
n=0 an(z− a)n is clearly analytic

at z = a and is therefore called the analytic part of f (z), but the second series i.e.

∑
∞
n=1

bn
(z−a)n is not analytic at z = a. This part is, therefore, called the singular part or

the principal part of f (z) and depends on the coefficients bn.

• If bn = 0 ∀ n = 1,2, . . ., then the point z = a is called a removable singularity of

f (z) and f (z) becomes analytic at z = a by defining f (a) suitably.

• If bn = 0 ∀ n > m i.e. bm+1 = 0 = bm+2 = bm+3 = . . ., but bm ̸= 0, then z = a

is called a pole of order or multiplicity m of f (z) and the principal part of f (z)

4



1.3 The Residue Theorem

reduces to
b1

z−a
+

b2

(z−a)2 + · · ·+ bm

(z−a)m .

• A pole of order 1 is called a simple pole.

• The first coefficient b1 i.e. the coefficient of 1
z−a is then called the residue of f (z)

at the pole z = a and is given by

b1 =
1

2πι

∫
C1

f (w)dw.

• If bn ̸= 0 for an infinite number of values of n, then z = a is called an essential

singularity of f (z). This singularity is the most complicated singularity.

Section 1.3

The Residue Theorem

Statement: If f (z) is analytic within and on a simple closed curve C, except at a finite

number ’n’ of poles within C, then∫
C

f (z)dz = 2πι

n

∑
j=1

R j,

where R j is the residue of f (z) at a pole within C.

Proof. Let a1,a2, . . . ,an be n poles of f (z) within C. With each pole a j as centre, draw

circles γ j of radius r so small that these circles lie entirely within C and does not touch

each other. Then f (z) is analytic in the region lying between C and the circles. So by

Cauchy’s theorem ∫
C−(γ1+γ2+···+γn)

f (z)dz = 0,
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1.3 The Residue Theorem

or ∫
C

f (z)dz =
∫

γ1

f (z)dz+
∫

γ2

f (z)dz+ · · ·+
∫

γn

f (z)dz. (3.1)

Now

b1 =
1

2πι

∫
C

f (z)dz

=⇒
∫

C
f (z)dz = (2πι)b1.

Therefore, ∫
γ1

f (z)dz = (2πι)R1, where R1 is the residue of f (z) at z = a.

Similarly ∫
γn

f (z)dz = (2πι)Rn, n = 1,2, . . .

From equation(3.1) we obtain∫
C

f (z)dz = (2πι)R1 +(2πι)R2 + · · ·+(2πι)Rn

= (2πι)
n

∑
j=1

R j.

This completes the proof.
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Chapter 2

Argument Principle

Section 2.1

Argument Principle, First Version

To state and prove argument principle, we first state following theorem

Theorem 2.1.1. Given a closed rectifiable Jordan curve L, suppose φ(z) is analytic on

I(L), while f (z) is analytic on I(L) except for poles in I(L) at the points b1,b2, . . . ,bn.

Moreover, suppose f (z) has A-points a1,a2, . . . ,am in I(L), but none on L itself. Then

1
2πι

∫
L

φ(z)
f ′(z)

f (z)−A
dz =

m

∑
k=1

αkφ(ak)−
n

∑
k=1

βkφ(bk) (1.1)

where αk is the order of ak and βk the order of bk.

The first term in the right-hand side of (1.1) is the sum of the values of φ(z) at the

A-points of f (z), where each value is repeated a number of times equal to the order of the

A-point. If we assume that each A-point of f (z) is counted a number of times equal to its

order, then the sum
m

∑
k=1

αkφ(ak)

7



2.1 Argument Principle, First Version

can be regarded as just the sum of the values of φ(z) at the A-points of f (z). Similarly,

the sum
n

∑
k=1

βkφ(bk)

can be regarded as the sum of the values of φ(z) at the poles of f (z), if each pole of f (z)

is counted a number of times equal to its order. With this convention (which will be in

force from now on), we can paraphrase Theorem (2.1.1) as follows:

Theorem 2.1.2. Given a closed rectifiable Jordan curve L, suppose φ(z) is analytic on

I(L), while f (z) is analytic on I(L) except for poles in I(L) and has no A-points on L.

Then the integral
1

2πι

∫
L

φ(z)
f ′(z)

f (z)−A
dz (1.2)

equals the sum of the values of φ(z) at the A-points of f (z) minus the sum of the values of

φ(z) at the poles of f (z).

Example 1: If φ(z) = z, then

1
2πι

∫
L

z f ′(z)
f (z)−A

dz =
m

∑
k=1

αkak −
n

∑
k=1

βkbk, (1.3)

i.e. the integral (1.2) is just the sum of the A-points of f (z) inside L minus the sum of the

poles of f (z) inside L.

Example 2: If φ(z) = 1, then

1
2πι

∫
L

f ′(z)
f (z)−A

dz =
m

∑
k=1

αk −
n

∑
k=1

βk, (1.4)

where the quantity on the right equals the number of A-points of f (z) inside L minus the

number of poles of f (z) inside L.

Now suppose f (z) has N zeros and P poles inside L, where each zero and pole is counted

a number of times equal to its order, as already described. (In particular, N or P may

vanish). Then, setting A = 0 in equation (1.4), we have

1
2πι

∫
L

d
dz

ln f (z)dz =
1

2πι

∫
L

f ′(z)
f (z)

dz = N −P. (1.5)

8



2.1 Argument Principle, First Version

The integral on the left is called the logarithmic residue of f (z) relative to the cantour L.

In other words, the number of zeros of f (z) inside L minus the number of poles of f (z)

inside L equals the logarithmic residue of f (z) relative to L.

The logarithmic residue of f (z) relative to L has a simple geometric interpretation.

Choosing any point z0 ∈ L as the initial and final point of the path of integration, we make

one circuit around L in the positive(i.e., counterclockwise) direction. Then ln f (z) varies

continuously, and in general returns to z0 with a value different from its original value at

z0. In fact, since

ln f (z) = log | f (z) |+ι Arg f (z),

the change in ln f (z) is entirely due to the change in Arg f (z). Letting Ω0 denote the

original value of Arg f (z0) and Ω1 its value after the circuit around L, we have

1
2πι

∫
L

d
dz

ln f (z)dz =
1

2πι
[ln | f (z) |+ιΩ1]−

1
2πι

[ln | f (z0) |+ιΩ0] =
Ω1 −Ω0

2π
(1.6)

comparing equation(1.5) and equation(1.6), we find that

N −P =
Ω1 −Ω0

2π
=

1
2π

∆L Arg f (z). (1.7)

In other words, the number of zeros of f (z) inside L minus the number of poles of f (z)

inside L equals 1
2π

times the change in Arg f (z) when the contour L is traversed once in

the positive direction.

There is still another way of interpreting this result: As a variable point z describes

the closed curve L once in the positive direction, the image point w = f (z) describes

a closed curve L∗ = f (L) in the w-plane, making some number v of complete circuits

around the origin made in the positive direction is counted as +1 and every circuit made

in the negative direction is counted as −1.

Making the obvious generalization of the case where A ̸= 0 in equation(1.4), we

summarize these results in the form of

9



2.2 Argument Principle, Second Version

Theorem 2.1.3. (Argument Principle) Given a closed rectifiable Jordan curve L, suppose

f (z) is analytic on I(L) except for poles in I(L) and has no A-points on L. Then the number

of A-points of f (z) inside L equals the number of circuits around the point w = A made

by the point w = f (z) as the point z traverses the curve L once in the positive direction.

Section 2.2

Argument Principle, Second Version

Theorem 2.2.1. (Argument Principle) Let φ be meromorphic in a domain D ⊆ C and

have only finitely many zeros and poles in D. If C is a simple closed contour in D such

that no poles of φ lie on C, then

1
2πι

∫
C

φ ′(z)
φ(z)

dz = N −P. (2.8)

where N and P denote, respectively, the number of zeros and poles of φ inside C, each

counted according to their order.

Proof. Define F(z) = φ ′(z)
φ(z) . Then, the only possible singularities of F inside C are the

zeros and poles of φ . Therefore

1
2πι

∫
C

F(z)dz = ∑Res [F(z);C] . (2.9)

if a j is a zero of order n j of φ and if bk is a pole of order pk of φ , then it follows that

Res
[

φ ′(z)
φ(z)

;a j

]
= n j and Res

[
φ ′(z)
φ(z)

;bk

]
=−pk.

Thus equation(2.9) becomes

1
2πι

∫
C

φ ′(z)
φ(z)

dz = ∑
j

n j −∑
k

pk = N −P.

10



2.2 Argument Principle, Second Version

Remark 2.2.2. If in addition, ψ is analytic on D, then under the hypothesis of Theorem

(2.2.1) we easily see that

1
2πι

∫
C

ψ(z)
φ ′(z)
φ(z)

dz = ∑
j

n jψ(a j)−∑
k

pkψ(bk),

where a j and bk are the zeros of order n j and the poles of order pk for φ , respectively.

Why is Theorem (2.2.1) known as an argument principle? Let us now restate

Theorem (2.2.1) in terms of the properties of the logarithmic function logφ(z). For this,

under the hypotheses of Theorem (2.2.1), consider the transformation w = logφ(z). Note

that φ is analytic on C and φ(z) ̸= 0 in a neighborhood of C. For any analytic branch

logφ(z) of logarithm of φ(z), we have

d
dz
(logφ(z)) =

φ ′(z)
φ(z)

and therefore,

1
2πι

∫
C

φ ′(z)
φ(z)

dz =
1

2πι

∫
C

d(logφ(z))dz =
1

2πι
∆C logφ(z). (2.10)

We refer to this integral as the logarithmic integral of φ(z) along C. Here ∆C logφ(z)

denotes the increase in logφ(z) when C is traversed once in the positive direction, and

we say that the logarithmic integral measures the change of logφ(z) along the cantour C.

Now, we express

logφ(z) = ln | φ(z) |+ιargφ(z),

where ln | φ(z) | is single-valued and hence, ∆C ln | φ(z) | returns to its original value when

C is traversed. This observation implies that

∆C ln | φ(z) |= ι∆Cargφ(z).

Therefore, equation(2.10) yields

1
2πι

∫
C

φ ′(z)
φ(z)

dz =
1

2π
∆Cargφ(z).

11



2.3 Argument Principle, Third Version

where ∆Cargφ(z) is referred to as the increase in the argument of φ(z) along C. Thus, the

argument principle can be restated as follows.

Corollary 2.2.3. Under the hypothesis of Theorem (2.8), we have

1
2π

∆Cargφ(z) = N −P.

Corollary 2.2.4. If φ is analytic inside and on a simple closed contour C and φ(z) ̸= 0 on

C, then
1

2π
∆Cargφ(z) = N.

Section 2.3

Argument Principle, Third Version

Theorem 2.3.1. Let f (z) be analytic inside and on simple closed curve C except at a finite

number of poles b1,b2, . . . ,bm inside C, but no zero or pole on C. Then

1
2πι

∫
C

f ′(z)
f (z)

dz = N −P,

where N is the number of zero and P is the number of poles , the zeros and the poles being

counted according to their multiplicities.

Proof. Let f (z) have zeros a1,a2, . . . ,an of multiplicities k1,k2, . . . ,kn and poles

b1,b2, . . . ,bm multiplicities l1, l2, . . . , lm inside C and no zero or pole on C. Then we can

write

f (z) =
(z−a1)

k1(z−a2)
k2 . . .(z−an)

kn

(z−b1)l1(z−b2)l2 . . .(z−bm)lm
θ(z),

where θ(z) is analytic inside and on C with no zeros or poles.

Taking log on both sides, we get

log f (z) =
n

∑
r=1

kr log(z−ar)−
m

∑
s=1

ls log(z−bs)+ logθ(z).

12



2.3 Argument Principle, Third Version

Differentiating both sides w.r.t. z we get

f ′(z)
f (z)

=
n

∑
r=1

kr

z−ar
−

m

∑
s=1

ls
z−bs

+
θ ′(z)
θ(z)

.

Multiplying both sides by 1
2πι

and integrating over C, we get

1
2πι

∫
C

f ′(z)
f (z)

dz =
1

2πι

n

∑
r=1

kr

∫
C

dz
z−ar

− 1
2πι

m

∑
s=1

ls
∫

C

dz
z−bs

+
1

2πι

∫
C

θ ′(z)
θ(z)

dz.

Since
∫

C
dz

z−α
=

∫
Γ

dz
z−α

= 2πι (Γ being a circle of small radius inside C) for any α inside

C and since θ(z) ̸= 0 and θ ′(z) are analytic inside and on C so that θ ′(z)
θ(z) is analytic inside

and on C and hence equals to zero by Cauchy’s theorem, it follows that

1
2πι

∫
C

f ′(z)
f (z)

dz =
n

∑
r=1

kr −
m

∑
s=1

ls +0 =
n

∑
r=1

kr −
m

∑
s=1

ls = N −P.

Remark 2.3.2. If in the above theorem f (z) has no poles inside or on C and no zeros on

C, then
1

2πι

∫
C

f ′(z)
f (z)

dz = N = Number of zeros of f(z) inside C.

In other words, we have the following result known as the Argument Principle.

Theorem 2.3.3. (Argument Principle) Let f (z) be analytic inside and on a simple closed

curve C having no zero on C. Then

1
2πι

∫
C

f ′(z)
f (z)

dz = Number of zeros of f(z) inside C.

Proof. Let a1,a2, . . . ,am be the zeros of f (z) inside C of multiplicity n1,n2, · · · ,nm. There-

fore total number of zeros of f (z) inside C is equal to n1 +n2 + · · ·+nm.

Now z = ar is a zero of f (z) of multiplicity nr, it follows by factor theorem that (z−ar)
nr

is a factor of f (z), r = 1,2, . . . ,m

13



2.3 Argument Principle, Third Version

Hence we write f (z) = (z−a1)
n1(z−a2)

n2 · · ·(z−am)
nmθ(z), where θ(z) is analytic in-

side & non zero inside & on C.

Taking log on both sides and using their properties we get

log f (z) = n1 log(z−a1)+n2 log(z−a2)+ · · ·+nmlog(z−am)+ logθ(z).

Differentiating both sides w.r.t. z over C we get

f ′(z)
f (z)

=
n1

z−a1
+

n2

z−a2
+ · · ·+ nm

z−am
+

θ ′(z)
θ(z)

.

Integrating both sides w.r.t z over C we get∫
C

f ′(z)
f (z)

dz =
m

∑
r=1

∫
C

nr

z−ar
dz+

∫
C

θ ′(z)
θ(z)

dz. (3.11)

Since θ(z) is analytic inside & on C. Therefore by Cauchy’s integral formula θ ′(z) is also

analytic inside & on C.

Therefore, θ ′(z)
θ(z) being the quotient of two analytic functions with non zero denominator

inside & on C, is analytic inside & on C. Hence by Cauchy’s theorem∫
C

θ ′(z)
θ(z)

dz = 0.

Also for r = 1,2, . . . ,m we have∫
C

nr

z−ar
dz =

∫
Γ

nr

z−ar
dz,

where Γ is a circle of radius ρ with centre ar lying entirely inside C. Therefore∫
C

nr

z−ar
dz =

∫ 2π

0

nrριeιθ dθ

z−ar
dz.

Hence it follows from equation(3.11) that∫
C

f ′(z)
f (z)

dz =
m

∑
r=1

2πι .nm

= 2πι(n1 +n2 + . . .+nr)

=⇒ 1
2πι

∫
C

f ′(z)
f (z)

dz = Number of zeros of f(z) inside C.
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Chapter 3

Applications

Some of the important applications of Argument principle are:

Section 3.1

Rouche’s Theorem

Statement: let f (z) and g(z) be analytic inside and on a simple closed curve C and let

| g(z) |<| f (z) | on C. Then f (z) and f (z)±g(z) have the same number of zeros inside C.

Proof. We first note that f (z) ̸= 0 on C. For if f (z) = 0 on C, then according to hypothesis

| g(z) |< | f (z)|= 0 i.e. | g(z) |< 0 on C, which is absurd.

Similarly, f (z)+ g(z) ̸= 0 on C, because otherwise g(z) = − f (z) on C so that | g(z) |=|

− f (z) |=| f (z) | on C, which is a contradiction to the hypothesis that | g(z) |<| f (z) | on

C.

Thus, we have by the Argument Principle applied to the analytic functions f (z) and f (z)+

g(z),
1

2πι

∫
C

f ′(z)
f (z)

dz = Number of zeros of f (z) inside C.

15



3.1 Rouche’s Theorem

and
1

2πι

∫
C

f ′(z)+g′(z)
f (z)+g(z)

dz = Number of zeros of f (z)+g(z) inside C.

To prove the theorem, it is suffice to show that

1
2πι

∫
C

f ′(z)
f (z)

dz =
1

2πι

∫
C

f ′(z)+g′(z)
f (z)+g(z)

dz.

For any λ ∈ [0,1] i.e. 0 ≤ λ ≤ 1. We have on C

| f (z)+λg(z) | ≥| f (z) | − | λg(z) |

=| f (z) | −λ | g(z) |

≥| f (z) | − | g(z) |

> 0.

This shows that f (z)+λg(z) ̸= 0 on C. Therefore, by Argument Principle applied to the

analytic function f (z)+λg(z), We have

1
2πι

∫
C

f ′(z)+λg′(z)
f (z)+λg(z)

dz = I(λ ) (say) = Number of zeros of f (z)+λg(z) inside C.

Clearly I(λ ) is a continous function of λ in [0,1] and it assumes only positive integral

values. Since a continuous function in a closed interval assuming only rational values

(and hence only positive integral values) is a constant, it follows that I(λ ) is a constant.

Therefore, I(0) = I(1) i.e.

1
2πι

∫
C

f ′(z)
f (z)

dz =
1

2πι

∫
C

f ′(z)+g′(z)
f (z)+g(z)

dz,

thereby proving that f (z) and f (z)+g(z) have the same number of zeros inside C.

Since ˘g(z) is also analytic and | −g(z) |=| g(z) |, the above arguments shows that f (z)

and f (z)−g(z) also have the same number of zeros inside C.

16



3.2 Evaluation of integrals

Section 3.2

Evaluation of integrals

With the help of the Argument Principle we can evaluate certain integrals. For example

consider the integral
∫
|z|=2

3z2

z3−1 dz. If we take f (z) = z3 −1, then f (z) is analytic | z |≤ 2,

f ′(z) = 3z2 and f (z) has 3 zeros 1, −1+ι
√

3
2 , −1−ι

√
3

2 in | z |< 2.

Therefore, by the Argument Principle,

1
2πι

∫
|z|=2

f ′(z)
f (z)

dz =
1

2πι

∫
|z|=2

3z2

z3 −1
dz = Number of zeros of f (z) = z3 −1 in | z |< 2.

which gives ∫
|z|=2

3z2

z3 −1
dz = 2πι .3 = 6πι .

We can use Rouche’s Theorem to prove following results

Section 3.3

Fundamental Theorem of Algebra

Statement: Every complex polynomial of degree n has exactly n zeros in C.

Proof. Let p(z) = anzn +an−1zn−1 + · · ·+a1z+a0 be any complex polynomial of degree

n so that an ̸= 0, an−1, . . . ,a1,a0 are complex numbers.

We take f (z) = anzn and g(z) = an−1zn−1+ · · ·+a1z+a0. Then f (z) and g(z) being entire

are analytic for | z |≤ r for any r > 0, howsoever large.

Further, for | z |= r, we have

| f (z) |=| anzn |=| an || z |n=| an | rn

17



3.4 First Part of Maximum Modulus Theorem

and

| g(z) |=| an−1zn−1 + · · ·+a1z+a0 |

≤| an−1 || z |n−1 + · · ·+ | a1 || z |+ | a0 |

=| an−1 | rn−1 + · · ·+ | a1 | r+ | a0 | .

Thus for | z |= r, We have

| g(z) |
| f (z) |

≤ | an−1 | rn−1 + · · ·+ | a1 | r+ | a0 |
| an | rn

=
| an−1 |
| an |

1
r
+

| an−2 |
| an |

1
r2 + · · ·+ | a1 |

| an |
+

| a0 |
| an |

1
rn .

letting r → ∞ and noting that the RHS of above inequality tends to zero as r → ∞, it

follows that |g(z)|
| f (z)| < 1 for | z |= r and for suitably chosen large r. Thus | g(z) |<| f (z) | for

| z |= r for that r.

Hence, it follows by Rouche’s theorem that f (z) and f (z)+g(z) have the same number of

zeros in | z |< r. Since f (z) has n zeros in | z |< r, all at z = 0. It follows that f (z)+g(z)

i.e, p(z) also has n zeros in | z |< r and, hence in the complex plane C.

Section 3.4

First Part of Maximum Modulus Theorem

Statement: If f (z) is analytic inside and on a simple closed curve C and | f (z) |≤ M on

C, then | f (z) |≤ M inside C.

Proof. Suppose that | f (z) |≤ M on C and | f (z) |> M inside C. Then there exists a point

z0 inside C such that | f (z0) |> M. Thus on C, | f (z) |≤ M <| f (z0) |

Since f (z) and f (z0) are analytic inside and on C, it follows by Rouche’s theorem that

f (z0) and f (z0)− f (z) have the same number of zeros inside C.

Since | f (z0) |> M > 0, we have | f (z0) |̸= 0.

18



3.5 Schwarz Lemma

Therefore, f (z0)− f (z) also has no zeros inside C which is contradiction, since f (z0)−

f (z) has a zero z = z0 inside C.

This contradiction shows that | f (z) |≤ M inside C also.

Section 3.5

Schwarz Lemma

Statement: Let f (z) be analytic for | z |≤ r, | f (z) |≤ M for | z |= r and f (0) = 0. Then

| f (z) |≤ M|z|
r for | z |≤ r.

Proof. Consider the function F(z) = f (z)
z . Then a possible singularity of F(z) is the point

z = 0. But since f (0) = 0, z = 0 is a zero of f (z) and hence z−0 = z is a factor of f (z)

so that the term z in the denominator of F(z) cancels with the same factor of f (z) in the

numerator. Therefore F(z) is analytic wherever f (z) is analytic. Since f (z) is analytic for

| z |≤ r by hypothesis , it follows that F(z) is analytic for | z |≤ r.

Also for | z |= r, since | f (z) |≤ M by hypothesis,

| F(z) |=
∣∣∣∣ f (z)

z

∣∣∣∣= | f (z) |
| z |

=
| f (z) |

r
≤ M

r
.

Therefore, by Maximum Modulus Theorem

| F(z) | ≤ M
r

for | z |< r,

i.e.
| f (z) |
| z |

≤ M
r

for | z |< r,

or | f (z) | ≤ M | z |
r

for | z |< r.

Since for | z |= r, M|z|
r = M and | f (z) |≤ M for | z |= r by hypothesis, it follows that

| f (z) |≤ M | z |
r

for | z |= r
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3.5 Schwarz Lemma

Thus,

| f (z) | ≤ M | z |
r

for | z |≤ r

and the result follows.

Generalization of Schwarz lemma for unit circle

Statement: Let f (z) be analytic for | z |≤ 1 and | f (z) |≤ M for | z |= 1 and f (a) = 0,

| a |< 1. Then | f (z) |≤ M | z−a
1−āz | for | z |≤ 1

Proof. For a = 0, the result reduces to Schwarz lemma.

Consider the function

g(z) = f (z)
(

1− āz
z−a

)
.

Since by hypothesis f (a) = 0, therefore z = a is zero of f (z). So by factor theorem z = a

is factor of f (z). Therefore the factor z− a in the denominator of g(z) will cancel with

the same factor of f (z) in the numerator. Hence it follows that g(z) is analytic whenever

f (z) is so.

Since by hypothesis f (z) is analytic for | z |≤ 1, it follows that g(z) is also analytic for

| z |≤ 1.

Further for | z |= 1,

| g(z) |=| f (z) | .
∣∣∣∣1− āz

z−a

∣∣∣∣
≤ M

∣∣∣∣1− āz
z−a

∣∣∣∣. (5.1)

We will show that ∣∣∣∣ z−a
1− āz

∣∣∣∣= 1 for | z |= 1

< 1 for | z |< 1.
(5.2)

To prove this, let us take z = x+ ιy, a = α + ιβ so that | z |2= x2+y2, | a |2= α2+β 2 and

ā = α − ιβ
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3.5 Schwarz Lemma

Then ∣∣∣∣ z−a
1− āz

∣∣∣∣2 = ∣∣∣∣ (x+ ιy)− (α + ιβ )

1− (α − ιβ )(x+ ιy)

∣∣∣∣2
=

∣∣∣∣ (x−α)+ ι(y−β )

(1−αx−βy)+ ι(βx−αy)

∣∣∣∣2
=

(x−α)2 +(y−β )2

(1−αx−βy)2 +(βx−αy)2

=
x2 −2αx+α2 + y2 −2βy+β 2

1+α2x2 +β 2y2 −2αx−2βy+2αβxy+β 2x2 +α2y2 −2αβxy

=
(x2 + y2)+(α2 +β 2 −2αx−2βy)

1+(α2 +β 2)(x2 + y2)−2αx−2βy)

=
|z|2 + |a|2 −2αx−2βy

1+ |a|2|z|2 −2αx−2βy
.

Put |z|= 1 we have ∣∣∣∣ z−a
1− āz

∣∣∣∣2 = 1+ |a|2 −2αx−2βy
1+ |a|2 −2αx−2βy

= 1.

Also for |z|< 1, we have ∣∣∣∣ z−a
1− āz

∣∣∣∣2 < 1,

if
|z|2 + |a|2 −2αx−2βy

1+ |a|2|z|2 −2αx−2βy
< 1,

i.e. if |z|2 + |a|2 −2αx−2βy < 1+ |a|2|z|2 −2αx−2βy,

i.e. if |z|2(1−|a|2)z < (1−|a|2),

i.e. if |z|2 < 1 (because|z|< 1),

i.e. if |z|< 1,

which is true by our supposition.

Thus ∣∣∣∣ z−a
1− āz

∣∣∣∣= 1 for z = 1

< 1 for |z|< 1.
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3.5 Schwarz Lemma

Using in equation(5.1) it follows that | g(z) |≤ M for | z |= 1.

Therefore, it follows by Maximum Modulus Theorem that

|g(z)| ≤ M for|z|< 1,

i.e. | f (z)|
∣∣∣∣1− āz

z−a

∣∣∣∣≤ M,

i.e. | f (z)| ≤ M
∣∣∣∣ z−a
1− āz

∣∣∣∣ for |z|< 1,

Since for |z|= 1, we have∣∣∣∣ z−a
1− āz

∣∣∣∣= 1 & | f (z)| ≤ M for |z|= 1.

Therefore

| f (z)| ≤ M| z−a
1− āz

| for |z|= 1.

Hence, it follows that

| f (z)| ≤ M
∣∣∣∣ z−a
1− āz

∣∣∣∣ for |z| ≤ 1.

Second Generalization

Statement: Let f (z) be analytic for | z |≤ 1 and | f (z) |≤ 1 for | z |= 1 and f (a) = 0,

0 ≤ a < 1. Then | f (z) |≤ |z|+a
1+a|z| for | z |≤ 1.

Proof. For a = 0, the result reduces to Schwarz lemma.

So let 0 < a < 1.

Consider the function

g(z) =
f (z)−a

1−a f (z)
. (5.3)

Then

1−a f (z) = 0

=⇒ f (z) =
1
a

=⇒ | f (z)|= 1
|a|

=
1
a
> 0, (because 0 < a < 1),
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3.5 Schwarz Lemma

Since for |z| ≤ 1, | f (z)| ≤ 1. Therefore, it follows that 1−a f (z) ̸= 0 for |z| ≤ 1

Thus g(z) is the quotient of analytic functions with non zero determinant in |z| ≤ 1.

Hence it follows that g(z) is analytic for |z| ≤ 1

Also

g(0) =
f (0)−a

1−a f (0)

=
a−a
1−a2

=
0

1−a2

= 0.

Further, for |z|= 1

|g(z)|=
∣∣∣∣ f (z)−a
1−a f (z)

∣∣∣∣
=

∣∣∣∣ f (z)−a
1− ā f (z)

∣∣∣∣ (because a is real)

≤ 1 for | f (z)| ≤ 1.

Thus g(z) satisfies all the three conditions of Schwarz lemma for |z| ≤ 1.

Therefore we conclude that

|g(z)| ≤ 1.|z|
1

(because M = 1,r = 1)

=⇒ |g(z)| ≤ z for|z| ≤ 1.

Let

g(z) = ρeιθ = ρ cosθ + ιρ sinθ .

Then

|g(z)|= ρ

Hence

ρ ≤ |z| for |z| ≤ 1. (5.4)
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3.5 Schwarz Lemma

Solving equation(5.3) for g(z) interms of f (z) we get

g(z)−a f (z)g(z) = f (z)−a

=⇒ f (z)(1+g(z)) = g(z)+a

=⇒ f (z) =
g(z)+a
1+g(z)

.

Therefore | f (z)|2 =
∣∣∣∣g(z)+a
1+g(z)

∣∣∣∣2
=⇒ | f (z)|2 =

∣∣∣∣ ρ cosθ + ιρ sinθ

1+aρ cosθ + ιaρ sinθ

∣∣∣∣2
=⇒ | f (z)|2 = (ρ cosθ +a)2 +ρ2 sin2

θ

(1+ρ cosθ)2 +a2ρ2 sin2
θ

=
ρ2 +a2 +2ρacosθ

1+a2ρ2 +2aρ cosθ

= p(θ)(say).

For maximum value of θ we put p′(θ) = 0

(1+a2ρ2 +2aρ cosθ)(−2aρ sinθ)− (ρ2 +a2 +2ρacosθ)(−2aρ sinθ)

(1+a2ρ2 +2aρ cosθ))2 = 0

=⇒ −2aρ sinθ(1+a2ρ2 −ρ2 −a2)

(1+a2ρ2 +2aρ cosθ)2 = 0

=⇒ sinθ = 0

=⇒ θ = 0,π,2π.

For θ = 0, we have p′′(θ)< 0. Therefore, p(θ) is maximum for θ = 0 and the maximum

value is

p(0) =
ρ2 +a2 +2ρa
1+a2ρ2 +2aρ

=

(
ρ +a

1+aρ

)2

Thus p(θ)≤ p(0) i.e.

p(θ)≤
(

ρ +a
1+aρ

)2

Hence it follows from above

| f (z)|2 ≤
(

ρ +a
1+aρ

)2
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3.5 Schwarz Lemma

This implies

| f (z)| ≤ ρ +a
1+aρ

for |z| ≤ 1. (5.5)

Now the function

q(ρ) =
ρ +a

1+aρ
.

Therefore

q′(ρ) =
(1+aρ)− (ρ +a)a

1+aρ

=
1−a2

(1+aρ)2

> 0 (because a < 1).

Therefore the function q(ρ) is an increasing function of ρ . since by equation(5.4) ρ ≤ |z|

for |z| ≤ 1.

Therefore

q(ρ)≤ q(z).

This implies
ρ +a

1+aρ
≤ |z|+a

1+a|z|
. (5.6)

Combining equation(5.4) and equation(5.5) we obtain

| f (z)| ≤ |z|+a
1+a|z|

for |z| ≤ 1.

Hence proved.
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Chapter 4

Conclusion

Throughout the project we discussed three different versions and the proofs of Argument

Principle. We also discussed different applications of Argument Principle. The proof of

Rouche’s Theorem and the evaluation of integrals saw the next major applications of the

Argument Principle. We also looked at the Fundamental Theorem of Algebra which tells

us that a polynomial p(z) = anzn+an−1zn−1+ · · ·+a1z+a0 where an ̸= 0, an−1, . . . ,a1,a0

are complex, has n roots in the complex plane. There are various ways of proving this the-

orem but in this project we looked specifically at the proof using the Argument Principle.

We also proved first part of Maximum Modulus Theorem by Rouche’s theorem. Schwarz

lemma and its generalizations are also discussed. These are just a few examples of the

applications of the Argument principle which are discussed in project. In general, its util-

ity extends to various areas of mathematics, physics, engineering, and beyond, where the

study of complex functions and their properties is crucial.
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