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Abstract
In this paper, we establish some integral-norm estimates for lacunary-type poly-

nomials in the complex plane that are inspired by some classical Bernstein-type

inequalities that relate the sup-norm of a polynomial to that of its polar derivative on

the unit circle. The obtained results generalize some already known estimates that

relate the Lc-norm of the polar derivative and the polynomial.

Keywords Polar derivative of a polynomial � Bernstein’s inequality � Lc-norm �
Minkwoski’s inequality
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1 Introduction

Let PðzÞ :¼
Pn

j¼0 ajz
j be a polynomial of degree n in the complex plane and P0ðzÞ its

derivative. The study of inequalities for different norms of derivatives of a

univariate complex polynomial in terms of the polynomial norm is a classical topic

in analysis. A classical inequality that provides an estimate to the size of the

derivative of a given polynomial on the unit disk, relative to size of the polynomial

itself on the same disk is the famous Bernstein inequality [4]. It states that: if P(z) is

a polynomial of degree n, then on jzj ¼ 1,
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P0ðzÞj j � nmax
jzj¼1

PðzÞj j: ð1:1Þ

Over the years, this Bernstein inequality has been generalized and extended in

several directions. In 1930, (see [5]) Bernstein himself revisited (1.1) and proved

that, for two polynomials P(z) and Q(z) with degree of P(z) not exceeding that of

Q(z) and QðzÞ 6¼ 0 for jzj[ 1, the inequality jPðzÞj � jQðzÞj on the unit disk jzj ¼ 1

implies the inequality of their derivatives jP0ðzÞj � jQ0ðzÞj on jzj ¼ 1. In fact, this

inequality gives (1.1) in particular by taking QðzÞ ¼ zn maxjzj¼1 jPðzÞj. It is worth

mentioning that equality holds in (1.1) if and only if P(z) has all its zeros at the

origin, so it is natural to seek improvements under appropriate assumption on the

zeros of P(z). If we restrict ourselves to the class of polynomials P(z) having no zero

in jzj\1, then (1.1) can be replaced by

max
jzj¼1

jP0ðzÞj � n

2
max
jzj¼1

jPðzÞj; ð1:2Þ

Inequality (1.2) was conjectured by Erdös and later proved by Lax [13].

As a refinement of (1.2), Aziz and Dawood [2] established that if P(z) is a

polynomial of degree n not vanishing in jzj\1, then

max
jzj¼1

jP0ðzÞj � n

2

�

max
jzj¼1

jPðzÞj � min
jzj¼1

jPðzÞj
�

: ð1:3Þ

In 1969 (see [14]), Malik extended (1.2) and proved that if PðzÞ 6¼ 0 in jzj\k; k > 1,

then

max
jzj¼1

jP0ðzÞj � n

1 þ k
max
jzj¼1

jPðzÞj: ð1:4Þ

Chan and Malik [7] generalized (1.4) and proved that if PðzÞ ¼ a0þPn
j¼l ajz

j; l� 1, is a polynomial of degree n having no zeros in jzj\k; k� 1, then

max
jzj¼1

jP0ðzÞj � n

1 þ kl
max
jzj¼1

jPðzÞj: ð1:5Þ

Further, as a generalization and refinement of (1.5), Kumar and Lal [12] considered

the class of polynomials PðzÞ ¼ zs
Pn�s

j¼l ajz
j

� �
; 1� l� n� s; 0� s� n� 1, of

degree n having a zero of order s at the origin and the remaining n� s zeros in

jzj � k; k� 1 and established that

max
jzj¼1

jP0ðzÞj � nþ skl

1 þ kl
max
jzj¼1

jPðzÞj � ðn� sÞ
ksð1 þ klÞmin

jzj¼k
jPðzÞj: ð1:6Þ

The above inequalities have been extended and generalized in different domains,

different norms and for different classes of functions. Zygmund [22] extended the

Bernstein-inequality (1.1) to Lc-norms of P(z) as
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�Z2p

0

P0ðeihÞ
�
�

�
�cdh

�1
c

� n

�Z2p

0

PðeihÞ
�
�

�
�cdh

�1
c

; c� 1:

As an extension of (1.2) to Lc-norms, de-Bruijn [6] proved an analogue of Zyg-

mund’s result for the class of polynomials not vanishing in jzj\1. Govil and

Rahman [10] generalized and sharpened the inequality due to de-Bruijn for poly-

nomials of degree n not vanishing in jzj\k, k� 1 and for any c� 1. Gardner and

Weems [9] not only generalized the above result of Govil and Rahman to lacunary-

tpye of polynomials but also validated it for 0\c\1 as well. As mentioned earlier,

different versions of Bernstein-type inequalities have appeared in the literature in

more generalized forms in which the underlying polynomials are replaced by more

general classes of functions. The one such generalization is moving from the

ordinary derivative to their polar derivative. Before mentioning few such general-

izations of the said inequalities, let us first introduce the concept of the polar

derivative involved. For a polynomial P(z) of degree n, we define

DaPðzÞ :¼ nPðzÞ þ ða� zÞP0ðzÞ;

the polar derivative of P(z) with respect to the point a. The polynomial DaPðzÞ is of

degree at most n� 1 and it generalizes the ordinary derivative in the sense that

lim
a!1

�
DaPðzÞ

a

�

¼ P0ðzÞ;

uniformly with respect to z for jzj �R, R[ 0.

Aziz [1] was among the first to extend some Bernstein-type inequalities by

replacing the ordinary derivative with the polar derivative of polynomial. The latest

research and development on this topic can be found in the papers

[11, 15–17, 19, 20]. In fact, in 1988, Aziz [1] proved that if P(z) is a polynomial

of degree n and PðzÞ 6¼ 0 in jzj\1, then for any complex number a with jaj � 1,

max
jzj¼1

jDaPðzÞj � n
jaj þ 1

2

� �

max
jzj¼1

jPðzÞj: ð1:7Þ

Very recently, Mir and Wani [20] extended (1.6) to the polar derivative of a

polynomial and proved that if PðzÞ ¼ zs
Pn�s

j¼l ajz
j

� �
; 1� l� n� s; 0� s� n� 1, is

a polynomial of degree n having a zero of order s at the origin and the remaining

n� s zeros in jzj � k; k� 1 then for any complex number a with jaj � 1,

max
jzj¼1

jDaPðzÞj �
n jaj þ klð Þ þ sðjaj � 1Þkl

1 þ kl
max
jzj¼1

jPðzÞj

� ðn� sÞðjaj � 1Þ
ksð1 þ klÞ min

jzj¼k
jPðzÞj:

ð1:8Þ

Mir and Baba [18] proved the following Lc-integral inequality which not only
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provides Lc-analogue of (1.3) and (1.7) but also provides a refinement of (1.7) as

well.

Theorem A If P(z) is a polynomial of degree n not vanishing in jzj\1; then for any
complex numbers a; d with jaj � 1, jdj � 1 and c[ 0,

Z2p

0

eihDaPðeihÞ þ mnd

�
jaj � 1

2

��
�
�
�

�
�
�
�

c

dh

8
<

:

9
=

;

1
c

� nðjaj þ 1ÞBc

Z2p

0

P eih
	 
�

�
�
�cdh

8
<

:

9
=

;

1
c

; ð1:9Þ

where

Bc ¼
1

2p

Z2p

0

1 þ eit
�
�

�
�cdt

8
<

:

9
=

;

�1
c

andm ¼ min
jzj¼1

jPðzÞj:

Further, Mir and Wani [17] proved a similar type of inequality as in (1.9) by using a
parameter b and established the following generalization of (1.7).

Theorem B If P(z) is a polynomial of degree n not vanishing in jzj\1, then for any
complex numbers a; b with jaj � 1; jbj � 1 and c[ 0,

Z2p

0

�
�
�eihDaP eih

	 

þ nb

�
jaj � 1

2

�

P eih
	 
��

�
c
dh

8
<

:

9
=

;

1
c

� n ðjaj þ 1Þ þ jbjðjaj � 1Þ
o
Bc

�Z2p

0

�
�
�PðeihÞ

�
�
�
c
dh

8
<

:

9
=

;

1
c

; ð1:10Þ

where Bc is as defined in Theorem A.

Note: Taking d ¼ 0 in Theorem A or b ¼ 0 in Theorem B, we get the Lc-
analogue of (1.7). Dividing both sides of (1.9) by jaj and letting jaj ! 1, we get the

corresponding Lc-analogue of (1.3).

The authors are curious to know how the above mentioned inequalities in

Theorems A and B, as well as some other inequalities, can be obtained from a

general integral inequality. Indeed, this paper is mainly motivated by the desire to

establish some more general Zygmund-type inequalities that extend (1.6) and (1.8)–

(1.10).
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2 Main results

Here, we prove the following generalization of Theorems A and B by considering

the lacunary-type of polynomials not vanishing in a disk. As special cases, some

known inequalities that relate the sup-norm of the derivative of a polynomial on the

unit circle to that of the polynomial itself will be the consequences from the more

fundamental inequality presented by the following theorem.

Theorem 1 If PðzÞ ¼ a0 þ
Pn

j¼l ajz
j; 1� l� n, is a polynomial of degree n having

no zeros in jzj\k; k� 1, then for any complex numbers a; b; d with jaj � 1; jdj � 1

and c� 1,

Z2p

0

eihDaPðeihÞ þ mnd
jaj � 1

1 þ kl

� �

þ nb
jaj � 1

1 þ kl

� �

P eih
	 


�
�
�
�

�
�
�
�

c

dh

8
<

:

9
=

;

1
c

� n ðjaj þ klÞ þ jbjðjaj � 1Þf gCcðk; lÞ
Z2p

0

P eih
	 
�

�
�
�cdh

8
<

:

9
=

;

1
c

; ð2:1Þ

where

Ccðk; lÞ ¼
1

2p

Z2p

0

�
�
�kl þ eih

�
�
�
c
dh

8
<

:

9
=

;

�1
c

;

and m ¼ minjzj¼k jPðzÞj.

In the limiting case, when c ! 1, the result is best possible and equality holds in

(2.1) for PðzÞ ¼ ðzl þ klÞ
n
l, where n is a multiple of l and a� 1 with b ¼ 0.

Taking b ¼ 0 in Theorem 1, we get the following generalization of Theorem A

for c� 1.

Corollary 1 If PðzÞ ¼ a0 þ
Pn

j¼l ajz
j; 1� l� n, is a polynomial of degree n having

no zeros in jzj\k; k� 1, then for any complex numbers a; d with jaj � 1; jdj � 1 and
c� 1,

Z2p

0

�
�
�eihDaPðeihÞ þ mnd

�
jaj � 1

1 þ kl

��
�
�
c
dh

8
<

:

9
=

;

1
c

� nðjaj þ klÞCcðk; lÞ
Z2p

0

�
�PðeihÞ

�
�cdh

8
<

:

9
=

;

1
c

; ð2:2Þ

where m and Ccðk; lÞ are as defined in Theorem 1.
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In the limiting case, when c ! 1, the result is best possible and equality holds in

(2.2) for PðzÞ ¼ ðzl þ klÞ
n
l, where n is a multiple of l and a� 1.

Remark 1 If we divide both sides of (2.2) by jaj and let jaj ! 1, we get a result of

Aziz and Shah [3]. If we let c ! 1 in (2.2), noting that Cc ! 1
1þkl and choose the

argument of d with jdj ¼ 1 suitably, we get a result of Dewan et al. [8, Corollary 1].

For k ¼ l ¼ 1, (2.2) reduces to (1.9).

If we take d ¼ 0 in Theorem 1, we get the following generalization of

Theorem B.

Corollary 2 If PðzÞ ¼ a0 þ
Pn

j¼l ajz
j; 1� l� n; is a polynomial of degree n and

PðzÞ 6¼ 0 in jzj\k; k� 1, then for any complex number a; b with jaj � 1 and c� 1,

Z2p

0

�
�eihDaP eih

	 

þ nb

jaj � 1

1 þ kl

� �

P eih
	 
��

�
c
dh

8
<

:

9
=

;

1
c

� n ðjaj þ klÞ þ jbjðjaj � 1Þf gCcðk; lÞ
Z2p

0

�
�P eih
	 
�

�cdh

8
<

:

9
=

;

1
c

; ð2:3Þ

where Ccðk; lÞ is as defined in Theorem 1.

Remark 2 For k ¼ l ¼ 1, the above corollary reduces to Theorem B when jbj � 1.

Dividing both sides of (2.3) by jaj and let jaj ! 1, we get the following result.

Corollary 3 If PðzÞ ¼ a0 þ
Pn

j¼l ajz
J ; 1� l� n; is a polynomial of degree n having

no zeros in jzj\k; k� 1, then for any complex numbers b with and c� 1,

Z2p

0

eihP0ðeihÞ þ nb
1 þ kl

P eih
	 


�
�
�
�

�
�
�
�

c

dh

8
<

:

9
=

;

1
c

� n jbj þ klð ÞCcðk; lÞ
Z2p

0

P eih
	 
�

�
�
�cdh

8
<

:

9
=

;

1
c

; ð2:4Þ

where Ccðk; lÞ is as defined in Theorem 1.

Remark 3 The above inequality (2.4) generalizes a result of Mir and Wani [17] and

some inequalities obtained by de-Bruijn [6] as well as Rahman and Schmeisser [21].

Remark 4 If we take b ¼ d ¼ 0 in Theorem 1, we get the polar derivative analogue

of an Lc-inequality due to Gardner and Weems [9].

Finally, we shall prove the following Lc-analogue of (1.8). As a special case our

result extends (1.6) as well.
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Theorem 2 If PðzÞ ¼ zs a0 þ
Pn�s

j¼l ajz
j

� �
; 1� l� n� s; 0� s� n� 1, is a poly-

nomial of degree n having s-fold zeros at the origin and the remaining n� s zeros in
jzj � k; k� 1, then for any complex numbers a; d with jaj � 1; jdj � 1 and c� 1,

Z2p

0

eihDaPðeihÞ þ
mðn� sÞðjaj � 1Þd

ksð1 þ klÞ

�
�
�
�

�
�
�
�

c

dh

8
<

:

9
=

;

1
c

� ðn� sÞðjaj þ klÞCcðk; lÞ þ sjaj
� �

Z2p

0

P eih
	 
�

�
�
�cdh

8
<

:

9
=

;

1
c

; ð2:5Þ

where m and Ccðk; lÞ are as defined in Theorem 1.

Remark 5 For s ¼ 0, Theorem 2 reduces to Corollary 1. If we let c ! 1 in (2.5),

noting that Ccðk;lÞ ! 1
1þkl and choose the argument of d with jdj ¼ 1 suitably, we

get (1.8). If we divide both sides of (2.5) by jaj and let jaj ! 1, we get the

Lc�analogue of (1.6).

Remark 6 The inequality (2.2) was also recently proved by Mir [16] and for d ¼ 0,

the inequality (2.5) was established by Mir [15].

3 Auxiliary results

We need the following lemmas to prove our theorems. The first lemma is due to

Aziz and Shah [3].

Lemma 1 If PðzÞ ¼ a0 þ
Pn

j¼l ajz
j; 1� l� n; is a polynomial of degree n having

no zeros in jzj\k; k� 1, then on jzj ¼ 1

kl P0ðzÞj j � Q0ðzÞj j � nmin
jzj¼k

PðzÞj j;

where QðzÞ ¼ znP 1
z

� �
.

Lemma 2 Let p, q be any two positive real numbers such that ðq� hÞ� ðpþ hÞx,

where h� 0 and x� 1. If b is any real number such that 0� b\2p, then

ðq� hÞ þ ðpþ hÞy½ � xþ eib
�
� �ðxþ yÞj jqþ peib

�
�; ð3:1Þ

for any y� 1.

The above lemma was recently proved by the first author [16].

Lemma 3 If P(z) is a polynomial of degree n and QðzÞ ¼ znP 1
z

� �
, then for every

c[ 0 and b real,
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Z2p

0

Z2p

0

Q0 eih
	 


þ eibP0 eih
	 
�

�
�
�cdhdb� 2pnc

Z2p

0

P eih
	 
�

�
�
�cdh:

The above lemma is again due to Aziz and Shah [3].

4 Proofs of Theorems

Proof of Theorem 1 Recall that PðzÞ ¼ a0 þ
Pn

j¼l ajz
j 6¼ 0 in jzj\k; k� 1: If

QðzÞ ¼ znPð1
�zÞ; then PðzÞ ¼ znQð1

�zÞ and it can be easily verified that for 0� h\2p;

nP eih
	 


� eihP0 eih
	 


¼ eiðn�1ÞhQ0ðeihÞ: ð4:1Þ

For any complex number a and 0� h\2p, we have

DaP eih
	 


¼ nP eih
	 


þ a� eih
	 


P0 eih
	 


;

which on using (4.1) gives,

DaP eih
	 
�

�
�
�� nP eih

	 

� eihP0 eih

	 
�
�

�
�þ jaj P0 eih

	 
�
�

�
�

¼ Q0 eih
	 
�

�
�
�þ jaj P0 eih

	 
�
�

�
�:

ð4:2Þ

Now for c� 1 and b; d 2 C with jdj � 1 and real t, we have by Minkwoski’s

inequality,
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Z 2p

0

kl þ eit
�
�
�
c
dt

Z 2p

0

�
�
�
�

�
�
�
�e

ihDaP eih
	 


þ dmn
jaj � 1

1 þ kl

� ��

þnb
jaj � 1

1 þ kl

� �

P eih
	 


cdhj g
1
c

¼
Z 2p

0

Z 2p

0

� �
�
�
�k

l þ eit cj jeihDaP eih
	 


þ dmn
jaj � 1

1 þ kl

� �

þnb
jaj � 1

1 þ kl

� �

P eih
	 


cdhdtj g
1
c

�
Z 2p

0

Z 2p

0

� �
�
�
�k

l þ eit cj jeihDaP eih
	 


þ dmn
jaj � 1

1 þ kl

� ��
�
�
c
dhdt

�1
c

þ njbjðjaj � 1Þ
Z2p

0

Z2p

0

�
�
�
�
kl þ eit

1 þ kl

�
�
�
�

c�
�
�PðeihÞ

�
�
�
c
dhdt

8
<

:

9
=

;

1
c

�
Z 2p

0

Z 2p

0

�
�
�kl þ eit

�
�
�
c��
�eihDaPðeihÞ þ dmn

jaj � 1

1 þ kl

� ��
�
�
c
dhdt

� �1
c

þ njbjðjaj � 1Þð2pÞ
1
c

Z2p

0

�
�
�PðeihÞ

�
�
�
c
dh

8
<

:

9
=

;

1
c

: ð4:3Þ

Again, since PðzÞ ¼ a0 þ
Pn

j¼l ajz
j 6¼ 0 in jzj\k; k� 1, by Lemma 1, we have for

0� h\2p;

kl P0 eih
	 
�

�
�
�� Q0 eih

	 
�
�

�
�� mn;

which is equivalent to

kl P0 eih
	 
�

�
�
�þ mn

1 þ kl

� �

� Q0 eih
	 
�

�
�
�� mn

1 þ kl
:

This gives by taking q ¼ jQ0ðeihÞj; p ¼ jP0ðeihÞj; h ¼ mn
1þkl ; x ¼ kl � 1 and y ¼

jaj � 1 in Lemma 2, we get for t real that

Q0 eih
	 
�

�
�
�� mn

1 þ kl

� �

þ jaj P0 eih
	 
�

�
�
�þ mn

1 þ kl

� �� �

kl þ eit
�
�

�
�

�ðkl þ jajÞ Q0 eih
	 
�

�
�
�þ eit P0 eih

	 
�
�

�
�

�
�

�
�:

ð4:4Þ

On applying (4.2) and (4.4), we get for each c� 1; d 2 C with jdj � 1 and t real,
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Z2p

0

�
�
�kl þ eit

�
�
�
c
dt

Z2p

0

�
�
�DaP eih

	 
��
�þ mn

jaj � 1

1 þ kl

� �
 �c
dh

¼
Z2p

0

Z2p

0

�
�
�kl þ eit

�
�
�
c �
�
�DaP eih

	 
��
�þ mn

jaj � 1

1 þ kl

� �
 �c
dtdh

�
Z2p

0

Z2p

0

�
�
�kl þ eit

�
�
�
c

Q0 eih
	 
�

�
�
�þ jaj P0 eih

	 
�
�

�
�þ mn

jaj � 1

1 þ kl

� �
 �c
dtdh

¼
Z2p

0

Z2p

0

�
�
�kl þ eit

�
�
�
c

Q0 eih
	 
�

�
�
�� mn

1 þ kl

� �

þ jaj P0 eih
	 
�

�
�
�þ mn

1 þ kl

� �
 �c
dtdh

�ðkl þ jajÞc
Z2p

0

Z2p

0

Q0 eih
	 
�

�
�
�þ eit P0 eih

	 
�
�

�
�

�
�

�
�cdtdh:

ð4:5Þ

Observe that for every c� 1 and a; b 2 C with t real (see [11]), we have

Z 2p

0

aþ eitb
�
�

�
�cdt ¼

Z 2p

0

jaj þ eitjbj
�
�

�
�cdt: ð4:6Þ

Inequality (4.5) gives with the help of (4.6) and Lemma 3 for each c� 1, t real and

jaj � 1;

Z2p

0

�
�
�kl þ eit

�
�
�
c
dt

Z2p

0

�
�
�DaP eih

	 
��
�þ mn

jaj � 1

1 þ kl

� �
 �c
dh

�ðkl þ jajÞc
Z 2p

0

Z 2p

0

�
�
�Q0 eih

	 

þ eitP0 eih

	 
��
�
c
dtdh

�ðkl þ jajÞc2pnc
Z 2p

0

�
�
�P eih
	 
��

�
c
dh:

ð4:7Þ

On using the obvious inequality

�
�
�eihDaPðeihÞ þ dmn

jaj � 1

1 þ kl

� ��
�
�� jDaPðeihÞj þ mn

jaj � 1

1 þ kl

� �

;

for jdj � 1 in (4.7) and raising the power 1
c on both sides and then using in (4.3) gives

(2.1). This completes the proof of Theorem 1. h

Proof of Theorem 2 If PðzÞ ¼ zs/ðzÞ, where /ðzÞ ¼ a0 þ
Pn�s

j¼l ajz
j; 1� l� n� s.

Applying inequality (4.7) to the polynomial /ðzÞ, we get for jaj � 1 and c� 1,
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Z2p

0

�
�
�Da/ðzÞ

�
�
�þ m0ðn� sÞðjaj � 1Þ

ð1 þ klÞ


 �c
dh

8
<

:

9
=

;

1
c

� ðn� sÞðjaj þ klÞ

1
2p

R2p

0

�
�
�kl þ eit

�
�
�
c
dt

� �1
c

Z2p

0

�
�/ðeihÞ

�
�cdh

8
<

:

9
=

;

1
c

;

ð4:8Þ

where m0 ¼ minjzj¼k j/ðzÞj ¼ 1
ks minjzj¼k jPðzÞj.

Now

DaPðzÞ ¼ nPðzÞ þ ða� zÞP0ðzÞ
¼ zsDa/ðzÞ þ aszs�1/ðzÞ;

which implies

zDaPðzÞ ¼ zsþ1Da/ðzÞ þ asPðzÞ: ð4:9Þ

Hence for 0� h\2p, we get from (4.9) that

DaP eih
	 
�

�
�
� ¼ eiðsþ1ÞhDa/ eih

	 

þ asP eih

	 
�
�

�
�

� jDa/ eih
	 


j þ sjajjP eih
	 


j;

which gives by using Minkowski’s inequality for c� 1,

Z2p

0

�
�
�DaP eih

	 
��
�þ

mðn� sÞðjaj � 1Þ
ksð1 þ klÞ


 �c
dh

8
<

:

9
=

;

1
c

�
Z2p

0

�
�
�Da/ eih

	 
��
�þ

mðn� sÞðjaj � 1Þ
ksð1 þ klÞ þ sjaj P eih

	 
�
�

�
�


 �c
dh

8
<

:

9
=

;

1
c

�
Z2p

0

�
�
�Da/ðeihÞ

�
�
�þ mðn� sÞðjaj � 1Þ

ksð1 þ klÞ


 �c
dh

8
<

:

9
=

;

1
c

þsjaj
Z2p

0

P eih
	 
�

�
�
�cdh

8
<

:

9
=

;

1
c

:

ð4:10Þ

Using (4.8) in (4.10) and noting that j/ðeihÞj ¼ jeish/ðeihÞj ¼ jPðeihÞj, it follows that

for every jaj � 1 and c� 1
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Z2p

0

DaP eih
	 
�

�
�
�þ mðn� sÞðjaj � 1Þ

ksð1 þ klÞ


 �c
dh

8
<

:

9
=

;

1
c

� ðn� sÞðjaj þ klÞ

1
2p

R2p

0

�
�
�kl þ eit

�
�
�
c
dh

� �1
c

þ sjaj

8
>>>><

>>>>:

9
>>>>=

>>>>;

Z2p

0

P eih
	 
�

�
�
�cdh

8
<

:

9
=

;

1
c

:

ð4:11Þ

Now using the fact for jdj � 1,

�
�
�eihDaPðeihÞ þ

dmðn� sÞðjaj � 1Þ
ksð1 þ klÞ

�
�
�� jDaPðeihÞj þ

mðn� sÞðjaj � 1Þ
ksð1 þ klÞ ;

in (4.11), we get (2.5). This completes the proof of Theorem 2. h
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