FUNCTIONAL ANALYSIS - II

Course Code: MM24407DCE	Total Credits: 04
Semester: MA/M.Sc. 4 th Semester	Total Marks: 100
Continuous Assessment: Marks 20, Theory: Marks 80	Time Duration: 2 ¹ / ₂ hrs

Course Objectives: To enable the student to understand the properties of Banach spaces in terms of bounded linear operators, separability and reflexivity of such spaces.

Course Outcomes: The students shall be able to undergo various advanced topics in the field of functional analysis with main focus on duality, completeness, Banach's advanced theorems and Mazur-Ulam theorem.

.....

Unit -I

Relationship between analytic and geometric forms of Hahn-Banach theorem, applications of Hahn-Banach theorem, Banach limits, Markov-Kakutani theorem for a commuting family of maps, complemented subspaces of Banach spaces, complementability of dual of a Banach space in its bidual, uncomplementability of c_0 and l_{∞} .

Unit -II

Dual of subspaces, quotient spaces of a normed linear space, weak and weak* topologies on a Banach space, Goldstine's theorem, Banach Alaoglu theorem and its simple consequences, Banach's closed range theorem, injective and surjective bounded linear mappings between Banach spaces.

Unit -III

 l_{∞} and C[0,1] as universal separable Banach spaces, l_1 as quotient universal separable Banach spaces, Reflexivity of Banach spaces and weak compactness, Completeness of $L_p[a,b]$, extreme points, Krein-Milman theorem and its simple consequences.

Unit -IV

Dual of l_{∞} , C(X) and L_p spaces. Mazur-Ulam theorem on isometries between real normed spaces, Muntz theorem in C[a, b].

Recommended Books:

- 1. J. B. Conway, A First Course in Functional Analysis, Springer Verlag, 4th Edition, 1997.
- 2. R. E. Megginson, An Introduction to Banach Space theory, Springer Verlag, GTM, Vol. 183, 1998th Edition, 1998.
- 3. Lawrence Bagget, Functional Analysis, A Primer, Chapman and Hall, 1991.
- 4. B. Ballobas, Linear Analysis (Cambridge University. Press, 2nd Edition, 1999.
- 5. B. Beauzamy, Introduction to Banach Spaces and their geometry, Elsevier Science, 2nd Edition, 1985.
- 6. Walter Rudin, Functional Analysis, Tata McGrawHill, 2nd Edition, 1990