ADVANCED CALCULUS

Course No: MM24204CR	Total Credits: 02
Semester: M.A/M.Sc 2 nd Semester	Total Marks: 50
Continuous Assessment: Marks 10, Theory Marks: 10	Time Duration: 1 ¹ / ₂ Hrs Course

Objectives: To extend the ideas of functions of one variable to several variables in order to study calculus and optimization problems in higher dimensions.

<u>Course Outcomes</u>: To explore more advanced topics of calculus, and developing strong problemsolving skills. It will deepen the understanding of concepts from single-variable calculus, including limits, continuity, differentiation, and integration.

UNIT-I

Functions of several variables in \mathbb{R}^n , the directional derivative, directional derivative and continuity, total derivative, matrix of a linear function, Jacobian matrix, chain rule, mean value theorem for differentiable functions.

UNIT-II

Sufficient conditions for differentiability and for the equality of mixed partials, Taylor's theorem for functions from \mathbb{R}^n and \mathbb{R} , inverse and implicit function theorem in \mathbb{R}^n , extremum problems for functions on \mathbb{R}^n , Lagrange's multiplier's, multiple Riemann Integral and change of variable formula for multiple Riemann integrals.

Recommended Books:

- 1. W. Rudin, Principles of Mathematical Analysis, McGraw Hill, Standard Edition (2023).
- 2. T. M. Apostol, Mathematical Analysis, Narosa (2002).
- 3. P. M. Fitzpatrick, Advanced Calculuc, American Mathematical Society, 2nd Edition (2009).
- 4. James J. Callahan, Advanced Calculus, Springer (2010).