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4.1: Introduction

In linear algebra, Jordan normal form (often called Jordan canonical form)
of a linear operator on a finite dimensional vector space is an upper
triangular matrix of a particular form called Jordan matrix, representing the
operator on some basis. The form is characterized by the condition that any
non-diagonal entries that are non-zero must be equal to 1, be immediately
above the main diagonal (on the super-diagonal), and have identical diagonal
entries to the left and below them. If the vector space is over a field K, then a
basis on which the matrix has the required form exists if and only if all
eigenvalues of M lie in K, or equivalently if the characteristic polynomial of
the operator splits into linear factors over K. This condition is always
satisfied if K is the field of complex numbers. The diagonal entries of the
normal form are the eigenvalues of the operator, with the number of times

each one occurs being given by its algebraic multiplicity.

If the operator is originally given by a square matrix M, then its Jordan
normal form is also called the Jordan normal form of M. Any square matrix
has a Jordan normal form if the field of coefficients is extended to one
containing all the eigenvalues of the matrix. In spite of its name, the normal
form for a given M is not entirely unique, as it is a block diagonal matrix
formed of Jordan blocks, the order of which is not fixed; it is conventional to
group blocks for the same eigenvalue together, but no ordering is imposed
among the eigenvalues, nor among the blocks for a given eigenvalue,
although the latter could for instance be ordered by weakly decreasing size.
The Jordan—Chevalley decomposition is particularly simple on a basis on
which the operator takes its Jordan normal form. The diagonal form for

diagonalizable matrices, for instance normal matrices, is a special case of the
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Jordan normal form. The Jordan normal form is named after Camille
Jordan. This chapter contains the results related to triangular form, Jordan
canonical form, bilinear form, quadratic forms etc for the graduate students

in Mathematics.

4.2: Similarity of Matrices
Definition: Let A and B are two square matrices. Then the matrix B is said
similar to A if there exists an invertible matrix P such that

P'AP=B
Theorem : Similarity of matrices is an equivalence relation
Similarity of Linear transformation
Definition : Let V be an n-dimensional vector space over a field F. Let A(V)
be the set of all linear transformations from V to V. Then two linear
transformations S,7 e A(V) are said to be similar if there exists an invertible
linear transformation C e A(V) such that

c'sc=rt
The relation on A(V) defined by similarity is an equivalence relation, thus,
A(V) decomposes into equivalence classes, each is called similarity class.
The existence of linear transformation in each similarity class whose matrix
representation in some bases of V is of special form, such matrices are
known as Canonical forms.

Now in order to check the two linear transformations are similar, we have
to compute a particular canonical form for each and check if these are the
same.

There are many canonical forms, but we shall discuss the following forms:

(i) Triangular form

(ii) Jordan form
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(iii) Rational Canonical form
Theorem : 7:U — V be a linear transformation and rank T is equal to r, then

there exist bases of U and that of V such that the matrix representation of T

o )

where 1 is the r-square identity matrix.

has the form

[The matrix A is known as normal or canonical form]
Proof: Let the dim U = m and dim V = n. Let W be the kernel of T and
Im (T) the image of T.
Since the rank of T is r, therefore the dimension of the kernel space of T
is m-r. Let {o,,@,,--,,,_, } be a basis of W. So it can be extended to form a
basis of U. Let this extension be
{Vl’Vz""’Vn,a'paz"“ a,_ }

> m—r

Now setting u, =T(v,).u, =T(v,),---,u, =T(v,)

r r

Observe that
T(v,)=u, =1lu, +0uy+---+0u, +0u,,, ++0u,
T(v,)=u, =0u, +Laty +---+0u, +0u , +-+0u,
T(vy) =1y =0, +0u, +1auy +---+0u, +0u,,, +-+0u,
=u, =0u, +0u, +---+1u +0u,  +-+0u,
T(e,)=0=0u, +0u, +--+0u_ +0u,  ++0u,

T(o,)=0=0u, +0u, +---+0u, +0u,  ++0u,

T(er,  )=0=0u,+0u, +---+0u +0u, +-+0u,

Thus the matrix representation of T is
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1 0 0 0 0 0
0 1 0 0 0 0

A={0 0 0 1 0 0 0
0 0 0 00 0 0
0 0 0 00 0 0)
I 0

or A=

0 oj

4.3. Canonical Forms

Let T be a linear operator on a finite dimensional vector space, we know
that T may not have a diagonal matrix representation ¥. The canonical form
aims to simplify the matrix representation of T by means of primary
decomposition theorem, Triangular, Jordan and rational canonical forms.

We note that that triangular and Jordan canonical forms exist for T if and
only if the characteristic polynomial A(4) of T has all its roots in the base
field K. this is always true if K is the complex field C but may not be true if
K is the real field R.

) 1 1) . ) ) ) ..
¥: The matrix A:(O J is not diagonalizable, since the characteristic

polynomial of A is A(1)=(1-1)*; hence 1 is the only eigen-value of A. We

find a basis of the eigen-space of the eigen-value 1. Substitute A =1 into the

matrix A/ —A to obtain

I 1) x -y=0
or or y=0
0 1Ny 0=0
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The system has only one independent solution, e.g., x=1,y=0. Hence
u=(1,0) forms a basis of the eigen-space of A. Since A has at most one
independent eigen-value, A can not be diagonalizable.
4.4: Invariance

Let 7:vV —V be linear. A subspace W of a V is said to be invariant if T
maps W into itself, i.e., if ve W implies T(v)e W . In this case T restricted to
W defines a linear operator on W; that is, T induces a linear operator

T:W — W defined by 7(w)=T(w) for everywe W .

Invariant Subspaces
Definition: Let 7:V —V be a linear transformation. Then a subspace W of
V is invariant under T if 7T(W)c V i.e., if ae W, then T(a)e W.
Example 1: Let T:R’ — R’ be the linear operator which rotates each vector
about the z-axis by an angle 4:

T(x,y,z)=(xcos@— ysin 8, xsin @ + ycos0, z)
Observe that each vector w=(a,b,0) in the xy plane W remains in W under
the mapping T, i.e., W is T-invariant. Observe also that the Z-axis U is
invariant under T. Furthermore, the restriction of T to W rotates each vector

about the origin O, and the restriction of T to U is the identity mapping of U.
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Example 2: Non-zero eigen vectors of a linear operator T:V —V may be
characterized as generators of T-invariant 1-dimensional subspaces. For
suppose T(v)=Av, v#0, then W ={ku; ke K}, the 1-dimensional subspace
generated by v, is invariant under T because

T(kv)=kT(v)=k(Iv)=klve W
Conversely, suppose that dim V =1 and u # 0 generates U, and U is
invariant under T. Then T(x)e U and so T(«) is a multiple of u, i.e.,

T(u)= pu, Hence u is an eigen vector of T.

Exercise 1: Suppose T:V —V is a linear operator, show that each of the

following is invariant under T.
(1) {0} i)V (ii1) Kernel of T (iv) Image of T
Sol.: We have T:V —V a linear map.
(i) Clearly T7(0)=0€ {0}
Hence {0} is invariant under T.
(ii) Forevery veV, T(v)eV,
Hence V is invariant under T.
(iii) Let ue kerT, then T(u)=0€ kerT . Since the kerT is a subspace of
V. Thus kerT is invariant under T.
(iv)  Since T(v)e Im(T), for every ve V, it is certainly true if ve Im(T).

Hence the Im(T)is invariant under T.

Exercise 2: Suppose {W.} is a collection of T-invariant subspaces of a vector
space V. Show that the intersection W =("\W, is also T-invariant.
Sol.: Suppose ve W ; then ve W, for every i. Since W, is T-invariant,

T(v)e W, for every i. Thus T(v)e W =(|W,, so W is T-invariant.
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Theorem 2: Let T:V —V be any linear operator and let f(r) be any
polynomial. Then the kernel of £(T) is invariant under T.

Proof: We have given that f(¢) is a polynomial and 7:V —V is a linear

map.

Now ker f(T)={ue V: (f(T))u)=0}

Now suppose ve ker f(T)

ie., f(r)v)=0

we need to show that T(v) also belongs to the kernel of f(T)
ie., F(TNT()=0

since fO)r=1(r)

we have f(r=1£(T)

Thus, fre)=1f(r)v)=T(0)=0

. . . . 2 =5) .
Exercise 3: Find all invariant subspaces of A = (1 j viewed as an

operator onR”.
Sol.: First of all, we have thatR*> and {0} are invariant under A. Now if A has

any other invariant subspaces, then it must be 1-dimensional. However the
characteristic polynomial of A is

A-2

=1 +1
-1 A+2

A(/i):|A—/U|:‘

Hence A has no eigen values (inR”) and so A has no eigen vectors. But the
1-dimensional invariant subspaces correspond to the eigen vectors; Thus R’

and {0} are the only subspaces invariant under A.
Theorem: If W is a subspace invariant under T e A(V), then T induces a

linear transformation T on V/W defined by T(a+W)=T(a)+W . Moreover
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if T satisfies the polynomial ¢(x)e F[x] then so is 7. Thus the minimal
polynomial of T divides the minimal polynomial of T.
Proof: First we show that T is well defined. Let +W and B+W be any
element of V/W.
If a+W=p+W,then a— e W. Since W is T-invariant, then
T(a-pB)=T(a)-T(B)e W
So, accordingly, T(a)+W =T(8)+W
= T(a+W)=T(B+W)
Thus T is well defined.
We now show that T is linear. For which,

T{a+W)+(B+W)}=T(a+ B+W)

=T(a+pB)+W
=T(a)+W +T(B)+W
=T(+W)+T(B+W)
Also T{cl@+W)}=T(ca+W)
=T(ca)+W
=cT(a)+W
=c(T () +W)
=cT (a+W)
Thus, T is linear.
Ifa+weviw,
Then T (a+W)=T*(a)+W =T(T(x))+W

=T(T(a)+W)=T(T(a+W))
=T*(a+W)

Therefore, (72)=(T)
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Thus, we can easily show that
(T")=(T)" for any n>0.

Now for any polynomial ¢(x)e F[x] given by
gx)=ax"+a,_x""+---+a,

gdTNa+W)=q(T)Na)+W =a T"(@)+a, T" " (@)+ +a,l(a)+ W

=>aT ()+W = Zai(T[(Of)"‘W)

=N aT (@+W)=Ya,(T) (@+W)

=q(T)a+W)

Therefore, ¢(T)=q(T). Accordingly if T is a root of ¢(x)=0, then

q({[)=0=W =¢4(T). Thus T is also a root of ¢(x)=0.
Let p,(x) be the minimal polynomial over F satisfied by T .
If ¢(T)=0 for g(x)e F[x] then p,(x)Ig(x). If p(x) be the minimal polynomial

of T over F, then p(T)=0 implies p(T')=0. Hence p,(x)! p(x).

4.5: Triangular Forms
Definition: 1If T:V —V is a linear transformation of V over F, then the
matrix of T in the basis {&,,a,,---,«,} of V is triangular if
T(al ) =a,
T(a'z ) =a,0, ta,a,
T(a'3 ) =450 Tan0, +aya,
T(an ) =a,a +a,q ++a,0q,
In other words, Let T be a linear operator on an n-dimensional vector space

V. suppose T can be represented by the triangular matrix
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Then the characteristic polynomial of T
AA)=|A- Al =(A-a, ) A-ay)-(A-a,,)

is a product of linear factors and conversely.

Theorem: If T € A(V) has all its characteristic roots in F, then there is a basis
of V in which the matrix of T is triangular.
Proof: We prove the theorem by induction on the dimension of V. If dim V
=1, then every matrix representation of T is a matrix of order 1 x 1, which is
trivially triangular.
Now suppose that the theorem is true for all vector spaces over F of
dimension n -1. Let dim V = n >1. Since T has all its characteristic roots of
F. Let 4, € F be a characteristic root of T. Then there exists a non-zero eigen
vector ¢, corresponding to A4 such that T(a,)=a,a,. Let W be the one
dimensional subspace of V spanned by ¢,, and is T-invariant. Set V =V /W,
then

dimV =dimV —dimW =n—1
Thus by the above theorem T induces a linear transformation 7 on V' whose
minimal polynomial divides the minimal polynomial of T. Therefore, all the
roots of the minimal polynomial of T, being roots of the minimal
polynomial of T must lie in F. Thus V and T satisfy the hypothesis of the
theorem.
Since dimV =n-1, therefore by induction hypothesis, there is a basis

{@.a,,---,@ } of V such that
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.......................................

=

(ﬁn): an2§2 + an3ﬁ3 +eeet annﬁn
Now let {a,,c,,--,a,} be the elements of V which belong to the cosets

a,.a,, -, a, respectively i.e., @ =, +W . Then {¢,.«,,---,,} is a basis of V.

Since T(@,)=a,a,

= T(a, +W)=a,,(a, +W)
= T(o,)+W =ay,(a,)+W
= T(e,)—ay,(a,)e W

But W is spanned by «,, so
T(a'z )_ Ay (a'z ) = a0,
= T(az): ay @ +ay (a'z)
Similarly for @,,a,,---,&,, we have
T(a'i ) =a,0, ta,a, +-+a,Q,
Thus, we have
T(al ) =a, o,
T(a'z ) =a,0, ta,a,
T(a'3 ) =450, Tant, +aya,
T(an ) =a,0 +a,q ++a,0q,
Hence the matrix of T in the basis {,,a,,-,a, }is triangular.
Alternative form of the above theorem: If a square matrix A has all its
characteristic roots in F, then A is similar to a triangular matrix i.e., there

exists an invertible matrix P such that P~'AP is triangular.
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Remark: Let T be the representation of triangular matrix

a Gy 4y,
A= 0 ay - a,
0 0 v a

Then the characteristic polynomial of T is given by
Ax) = xl — Al=(x—a, N x—ay, )--(x—a,,)

which is a product of linear factors.

Khanday M A

Theorem: If dim V = n and if T e A(V) has all its roots in F, then T satisfies

a polynomial of degree n and 4,4,,---,4, be the characteristic roots of F.

Proof: Since T has all its roots in F so there is a basis {¢,.a,,--,a,} of V

such that
T(e,)= A,
T(a,)=a, 0+ A0,
T(o,) = aya, +a,0, + Aa,
T(,)=a,0 +a,0,++1a,
Above equations are equivalent to
(T-A41)e,)=0
(T -2,1)a,)=a,q,
(T -A4,1)e,) = aya, +a,a,

.......................................

(T - ﬂ’ I)(an ) = anlal + an2a2 +eeet an(n—l)a’/

n—-1

Now (T = ZLINT - A1)e)= (T = AINT - A1), )

[ =201 - A1)=(T - 41T - 4,1)]

= (T - 12])(‘121“1 )
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= a, (T-AI)a,)=0
and (T - AINT - INT - Al)a,)= (T - A4,I\T - AINT - A1) e,)
=(T - LINT - A1) ay, @, +a,a,)
=(T = ALI)T - A1 Nay )+ (T = 4LINT - 41 )a,a,)
=a, (T = 2,1)T - 1) a,)+ay, (T - ALINT - Al )e,)
=0+0=0
Continuing in this way, we get
(T-AI\T -2, INT -4, 1) (T-A1)e,)=0
Let S=(T-AI)T-A,_I\T-A_1)---(T—AI), it satisfies S(e;,)=0, S(a,)=0, .
. Sa,)=0.
Thus annihilates a basis of V, thus S annihilates all of V. Therefore S = 0
which implies that
(T-AJINT -4, )T =24, ,1)(T-A1)=0
Hence T satisfies a polynomial
g(x)=(x=24 Yx-4_)x=A1_,)--(x=4,) in F[x] of degree n.
Theorem 1: let T:V—V be a linear operator whose characteristic
polynomial factors into linear polynomials. Then there exists a basis of V in
which T is represented by a triangular matrix.
Alternative form: Let A be a square matrix whose characteristic polynomial
factors into linear polynomials. Then A is similar to a triangular matrix, i.e.,
there exists an invertible matrix P such that P~ AP is triangular.
Example 1: Let A be a square matrix over the complex field C. Suppose A

is an eigen value of A%, Show that ¥4 or —+/4 is an eigen-value of A.

We know by the above theorem that
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Moo *
B M, *
A,

Hence A’ is similar to the matrix

ux *
o M *
u;

Since similar matrices have the same eigen-values, A=’ for some i. Hence
i, =+, ie., /1 or —+/1 is an eigen-value of A.

Theorem 3: Suppose W is invariant subspaces of 7:V — V. Then T has a

. . . A B ) .
block diagonal matrix representation (O Cj’ where A is a matrix

representation of the restriction 7 of T to W.
Proof: ~We choose a basis {w,w,,---,w } and extend it to a basis
ww,, o ow v, vy, v fof V.,
We have

7Aw(wl ) = T(Wl ) =apw, tapw, ¥ +a,w,

7Aw(wz ) = T(Wz ) =ayw, tayw, +ta,w,

T(vl)z b,w, +b,w, +-+b w +c, v, +-tc,V,
T(v2)= byw, +by,w, +--+b, w. +c, v, +--+cC, v,

...............................................................

T(vs)z b,w, +b,w,+-+b w +c v, +-tc v,
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But the matrix of T in this basis is the transpose of the matrix of coefficients

. . A B
of the above system of equations. Therefore, it has the form(o Cj’ where

A is the transpose of the matrix of coefficients for the obvious subsystem.
By the same argument A is the matrix of 7 relative to the basis {w.} of W.
Exercise 4: Let T denote the restriction of an operator T to an invariant
subspace W, i.e., T(W)=T(W) for every we W . Prove that
(i) For any polynomial f(:), f(F)w)=f(T)w)
(ii) The minimal polynomial of 7 divides the minimum polynomial
of T .
Sol.: (i) If f(r)=0 or f(t) is constant, i.e., of degree one, then the result
clearly holds. Assume deg f =n>1 and the result holds for polynomials of
degree less than n. Suppose that
fle)=at"+a, t"" ++at+a,
Then
I w)=la, 7" +a T+t a,F+a,lfw)
= (o, 7 )W)+ (0, 7"+ + a, T + g1 Jw)
=(a T NTW)+(a, T+ +a,T +a,I\w)
= f(T)w)
(ii) Let m(t) denote the minimum polynomial of 7. Then by (i)
m(f)(w) =m(T)(w)=0(w)=0 for every we W .
i.e., T is a zero of the polynomial m(r). Hence the minimum polynomial of 7

divides ml(r).
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4.6: Invariant Direct Sum Decomposition
A vector space V is termed as the direct sum of its subspaces W,,W,,---,W

r

written as
V=W OW,® 0w,
If for every ve V can be written uniquely in the form
v=w +w,+-+w, with w,e W,.
Theorem: If V=W, ®W,®---®W, where each subspace W, is of dimensions
n. and is invariant under T e A(V), then a basis of V can be found so that the

matrix of T in this basis is of the form

A 0 0
0 A - 0
0O 0 0 A

r

where each A, is an n, xn, matrix and is the matrix of the linear
transformation induced by T on W. .

Proof: Let {al“),az“),-~-,an1“)}, {al(z),az(z),-~-,anz(z)}, A {al(’),az(’),-~-,am(’)}
be the basis of W,,W,,---,W. respectively.

Since V=W, ®W, ®---®W,, therefore

1 (1) o @) (2) (2 ,, ) (r) (r)
{al SOy s Oy 0 0 O, 0, }

form a basis of V. Also each W,is T-invariant, so that T(aj(i))e W, and it is

linear combination of {al(”,az(”,-~-,am.(")}, and of only these, that is,

T(aj(i) ) =a" +a,"%," + +a Ve ...(D)
for j=12,---,n,j=12,---,n,, soonand i=12,---,r
Thus the matrix representation of T in a basis of V is obtained by (1) which

i
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A 0 0
0 A4, 0
0 0 0 A

where A, is the matrix of 7, induced on W, by T.

Home Assignments
1. Suppose W is invariant under S:V —V and 7:V —V . Show that W is
also invariant under S + T and ST.
2. Suppose T:V —V is linear and T =7, ®T,, with respect to a T-
invariant direct sum decomposition V =V, ®V,. Show that
(i)  m(x) is the least common multiple of m,(x) and m,(x), where
m(x), m,(x) and m,(x) are minimal polynomials of T, 7, and
T, respectively.
(i)  A(x)=A,(x)A,(x), where A(x), A,(x) and A,(x) are the
characteristic polynomials of 7, 7, and 7, respectively.
3. Let T:vV —V be linear and let W be the eigenspace belonging to an
eigenvalue A of T. Show that W is T-invariant.
4. Prove that similar matrices have the same eigenvalues.
Theorem 4: Suppose W, W,,--, W are subspaces of V, and Ilet
Wwosow b . o, tw,w,,,w, } are bases of W, W, W,
respectively, then V is the direct sum of the W, ;i=12,---,r if and only if the
UNion B = {w,,,Wy,, =+, Wy, 1, > W,;,W.,,--,w, | is a basis of V.

Proof: Suppose B ={w, ,w,, -, W, ,--» W, W,,,--,w__} is a basis of V, then for

every veV.

v=a,wy, tapw, - t+a,wy, o ta,w +a,w, e ta, w
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=w tw,+tw,
where w, =a,w, +a,w, +--+a,w,, €W,.
We next show that such a sum is unique.
Suppose v=w, +w, +---+w. where w e W/
Since {w,,w,,,---,w,.} is a basis of W,,
we have w, =b,w, +b,w, +--+b,.w,,
and so V=Dbywy Hbywy et by Wy e byW b, W
Since B is a basis of V, g, =b, for each ; and each j. Hence w, =w; and so
the sum of v is unique. Accordingly V is the direct sum of W, .
Conversely, suppose V is the direct sum ofW,. Then for anyveV,

v=w, +w,+---+w, where w eW,. Since {w, | is a basis of W,, each w, is a

iji
linear combination of the elements w,, and so v is the linear combination of
the elements of B. Thus B spans V. We now show that the elements in B are
linearly independent.

Suppose a,,w,, +a,w, +--+a,,w,, ++a,w,+a,w,+-+a,w, =0

Note that a,w, +a,w, +--+a,w,. €W, we also have 0=0+0+---+0, where
0e W,. Since such a sum for 0 is unique.

Therefore, a,w, +a,w, +---+a,w,, =0 for i=12,---,r

The independence of the basis {w,. | imply that all «'s are zero. Thus B is

iji

linearly independent and hence is a basis of V.

Remark 1: Suppose that 7:V —V is linear and V is the direct sum of (non-
zero) T-invariant subspaces W,,W,,---,W.:

r

V=W ew,® -®W, and TW,)cW,; i=12,.,r
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Let 7, denote the restriction of T to W,. Then T is said to be decomposed
into the operators 7, or T is said to be direct sum of the 7,, written
T=T,&T,®---®T,.. Also the subspaces W,,W,,---,W. are said to reduce T or
to form a T-invariant direct sum decomposition of V.

Remark 2: Consider the special case where two subspaces U and W reduce
an operator 7:V —V ; say dim U =2 and dim W = 3 and suppose {u,,u, } and

{v,,v,, v, }are basis of U and W respectively. If T, and 7, denote respectively

the restrictions of T to U and W, then

T,\ws ) =Dy w, +by,w, +byw,
Hence
u u b, b, b;
A:( " ‘ZJ and B=|b, b, b,
a a
2 2 by, by, Dby

are matrix representations of 7, and 7, respectively. By the above theorem

{u,,uy,v,,v,, v,} is a basis of V. Since T(u,)=T;(,) and T(w,)=T,(W,). The

1

.. . . . A O
matrix in the basis is the block diagonal matrix (O BJ'

Remark 3: Suppose 7:V —V is linear and V is the direct sum of T-

invariant subspaces W,,W,,---,W . If A.is the matrix representation of the
restrictions of T to W,, then T can be represented by the block diagonal

matrix
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A 0 0
0 A 0
M =
0 0 0 A

The block diagonal matrix M with diagonal entries A,,A,,---, A, iS sometimes
called the direct sum of the matrices A,A,,---,A, and is denoted by
M=A®A® DA .
Theorem 7: Suppose 7:V —V is linear and for f(r)=g(t)n(r) are
polynomials such that £(7')=0 and g(r) and A(r) are relatively prime. Then V
is the direct sum of the T-invariant subspaces U and W, where U = ker g(T)
and W =kerh(T).
Proof: Note first that U and W are T-invariants. Now, since g(r) and A(r)
are relatively prime, there exists polynomials r(¢) and s(r) such that

r(t)g(e)+s()n(r) =1
Hence for the operator T,

HT)g(T)+s(T)n(T)=1 (D
Let ve V, then by (1), we have

r(T)g(T W+ s(T(T ) =v
But the first term in this sum belongs to W =ker h(T'). Since

WI)(T)g(T = r(T)g(T(T ) = (T)f (T )

=r(T)0=0

Similarly, the second term in this sum belongs to U = ker g(T').

Hence, V is the direct sum of U and W.
To prove V=U®W, we must show that the representation v=u+w is

unique for v, u and w respectively, the elements of V, U and W.

Applying the operator r(T)g(T) to v=u+v using g(T)u =0, we obtain
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r(T)g(T)v = r(T)g(T)u+r(T)g(T)w=r(T)g(T)w
Again applying (1) to w alone and using A(T)w =0, we obtain
w=r(T)g(T)w+s(T)(T)w=r(T)g(T)w
Both of the above formulae gives us w=r(T)g(Th and w is uniquely
determined by v. Similarly » is uniquely determined by v. Hence
vV =U®W, as required.
Corollary: If f(t) is the minimal polynomial of T [ g(t) and h(t) are monic],
then g(t) and h(t) are the minimal polynomials of the restrictions of T to U

and W respectively.

4.7: Primary Decomposition Theorem
Statement: Let 7:V —V be a linear operator with minimal polynomial

m(t)= f,(0)" £, ()" £, )"
where f.(t) are the distinct monic irreducible polynomials. Then V is the
direct sum of T-invariant subspaces W,,W,,---, W _, where W, is the kernel of
f.(r)" . Moreover f,.(¢)"is the minimal polynomial of the restriction of T to
w..

Proof: To prove this result, we use induction onr.

Clearly for r = 1, the result is trivial.

Assume that the result is true for all values up to r-1. By using above
theorem, we can write v as the direct sum of T-invariant subspaces W, and
V,, where W, is the kernel of f£,(T')" and V, is the kernel of f£,(T)">--- £.(T)".
Also by using above corollary, the minimal polynomial of the restrictions of

T to W, and V, are respectively f,(T)" and f,(T)" - f.(T)".
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Denote the restrictions of T to V, by T,. By the induction hypothesis V, is the
direct sum of subspaces W,,---,W. such that W, is the kernel of f£,(')" and
such that f,(z)" is the minimal polynomial for the restriction of T to W,. But
the kernel of f,(T)" for i=12,---,r is necessarily contained in V, since f.(r)"
divides f,(¢)--- £.(t) . Thus the kernel of f,(T)"is the same as the f,(1})",
which is W,. Also the restriction of T to W, is the same as the restriction of
T, to W,;i=12,---,r. Hence f,(¢)"is also the minimal polynomial for the
restriction of T to W, thus V=W, @W, ®---®W. is the desired decomposition
of T.
Theorem: A linear operator T:V —V has a diagonal matrix representation if
and only if its minimal polynomial m(t) is a product of distinct linear
polynomials.
Proof: Suppose m(t) is a product of distinct linear polynomials, say
mlt)=(e =2 )t~ 4,)-(t=4,)
where the 4 are distinct scalars. By the primary decomposition theorem, V
is the direct sum of subspaces W,,W,,---,W. , where W, =ker(T - A.I), thus if
ve W,, then (T-AIl=0 or T(v)=Av. In other words, every vector in W, is
an eigenvector belonging to the eigenvalue 4. But we know that the union
of bases for W,,W,,---,W,_ is a bases of V. This basis consists of eigenvectors
and so T is diagonalizable.
Conversely, suppose T is diagonalizable, i.e. V has a basis consisting of

eigenvectors of T. Let 4,,4,,---,4_ be the distinct eigenvalues of T, then the

operator
f@)=(T-AI)T - A,1)---(T - A1)

maps each basis vector into zero.
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Thus f(T) = 0 and hence the minimum polynomial m(t) of T divides the
polynomial f(t)=(—A,)t—4,)---(t-1,)

Accordingly m(t) is the product of distinct linear polynomials.

Example: Suppose A=/ is a square matrix for which A’ =71. Determine
whether or not A is similar to a diagonal matrix if A is a matrix over (i) the
field of reals R, (ii) the complex field C.

Since A*=1, A is a zero of the polynomial f(t)=1>—1=(r—1)¢>+7+1)

The minimal polynomial m(t) of A can not be (r—1), since A # I

Hence m(t)=(t>+1+1) or m(t)=1> -1

Since neither polynomial is a product of linear polynomials over R, A is not
diagonalizable over R. On the other hand each of the polynomial is a product

of distinct linear polynomials over C. Hence A is diagonalizable over C.

4.8: Nilpotent Operators
A linear operator T:V —V is termed nilpotent if 7" =0, for some positive
integer n; we call k the index of nilpotency of T if 7" =0 but 7' #0.
Analogously, a square matrix A is termed nilpotent if A" =0 for some
positive integer n; and of index k if A* =0 but A" #0.
Clearly, the minimum polynomial of a nilpotent operator (matrix) of index k
is m(r)=1*, hence 0 is its only eigenvalue.
Theorem: Let 7:V -V be linear and for veVv, TX(v)=0 but T'(v)#0.
Prove that:

a) The set S ={,7(v),---,7*"(v)} is linearly independent.

b) The subspace W generated by S is T-invariant.

¢) The restriction 7 of T to W is nilpotent of index k.
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d) Relative to the basis {7*"(v),---,T(v),v} of W, the matrix of T is of the

form
0O 1 O 0 0
0O 0 1 0 0
0O 0 O 0 1
0O 0 O 0 0

Hence the above k-square matrix is nilpotent of index k.
Proof: (a) Suppose ayv+a,T(v)+a,T*(v)+-+a, T*'(v)=0 ..(1)
Apply 7' to (1) and using T“(v)=0, we obtain aT*'(v)=0; since
T"'(v)#0, a=0.
Now applying 7 to (1) and using T*(v)=0 and a=0, we find «,7*"(v)=0;
hence a, =0.
Next applying 7°° to (1) and using T*(v)=0 and a=q, =0, we find
a,T*'(v)=0; hence a, =0.
Continuing this process, we find that all the a’s are 0; hence S is linearly
independent.
(b) Let ve W. Then v=bv+bT(v)+b,T*(v)+--+b,_T""(v)
Using T*(v)=0, we have that
T(v)=bT(V)+bT*(v)+b,T°(V)+--+b,_ T (v)eW

Thus W is T- invariant.
(c) By hypothesisT*(v)=0, hence for i =0, 1, 2,---,k -1

T(r'(v)=7"(v)=0
i.e., applying T* to each generator of W, we obtain 0; hence 7* =0 and so T
is nilpotent of index at most k. On the other hand 7*'(v)=7"*"(v)=0.

Hence T is nilpotent of index k.
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(d) For the basis {7 (v),---,7(v).v} of W,

........................................

Hence the matrix in this basis is

o 1 0 -~ 0 O
o o 1 - 0 O
o 0o o0 - 0 1
o o o0 -~ 0 O

Theorem: Let 7:V —V be linear and U =kerT' and W =kerT™' Show that
(1) Ucw but T¥'(v)20 (i) TW)cw.
Proof: (i) Suppose wueU=kerT', then T'(u)=0 and so
T (u)=T(T"())=T(0)=0. Thus ue kerT™ =W
But this is true for every ue U . Hence U c W
(ii) Similarly if we W =ker7™*' then T™'(w)=0
Thus 7' (w)=T(T(w))=T7(0)=0
Therefore, T(W)c W
Theorem: Let T:V —V be a nilpotent operator of index k. Then T has a

block diagonal matrix representation whose diagonal entries are of the form
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0 1 0 0 O

0 0 1 0 O
N =

o 0o o0 - 0 1

o o0 o0 -~ 0 O

There is at least one N of order k and all other N are of order less or equal to
k. The number of N of each possible order is uniquely determined by T.
Moreover, the total number of N of all orders is the nullity of T.

Proof: Suppose dimV =n and W, =kerT, W, =kerT’, ..., W, =kerT*.

Set m, =dimW, for i=1, 2,---,k. Since T is of index k, W, =V and W_, =V,
and so m, , <m,=n.Weknow that W, cW, c..cW, =V.

Thus by induction, we can choose a basis {u,,u,,---,u,} of V such that
{ul,uz,-~-,umi} is a basis of W,.

We now choose a new basis for V with respect to which T has the desired
form. It will be convenient to label the members of this new basis by pairs of
indices. We begin by setting

v(Lk)=u v(2,k)=u vim, —m,_, k)= u, and  setting

my_+1 my_+29 . . . 2

v(Lk—1)=Tv(Lk), v(2,k-1)=Tv(2,k), ..., v(im, —m,_, ,k—1)=Tv(m, —m,_, k)

We also know that S, ={u,,-+,u,, . v(Lk=1),-,v(m, —m,_,k~1)} is linearly
independent subset of W_,.

We extend S, to a basis of W_, by adjoining new elements (if necessary)
which can be done v(m, —m,  +Lk—-1)v(m, —m,_ +2,k—-1), . . . ,
v(mk —m,_,,k— 1)

Next we set v(Lk=2)=Tv(Lk-1), v(2,k=2)=Tv(2,k-1), . . .

V(mk—l —m_y,k— 2) = Tv(mk—l —m_,.k— 1)
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Again, we have S, ={u,,--u, v(Lk=2),--,v(m,_ —m,_,,k-2)} is linearly
independent subset of W,_, which we can extend to a basis of W,_, by
adjoining elements
v(mk_1 -m,_, +Lk— 2), v(mk_1 —m,_, +2,k— 2) e e v(mk_2 —m_s,k— 2)

Continuing in this manner, we get a new basis for V, which for convenient
reference we arrange as follows

v(l,k),-~~,v(mk —mk_l,k)

v(l,k —1),-~~,v(mk -m_,,k —1),--~,v(mk_1 —-m,_,,k —1)

...........................................................

V(l’z)""’v(mk —my 1’2)""’V(mk—1 —my 2’2)"""’(’”2 _ml’z)

The bottom row forms a basis of W,, the bottom two rows form a basis of
W,, etc. But what is important for us is that T maps each vector immediately
below it in the table or into O if the vector is in the bottom is in the bottom
row. That is

Tvi, j) = {;(i’j_l) ;Z: ]:1

Now it is clear from the above theorem-(iv) that T will have the desired form
if the v(i, j) are ordered lexicographically: beginning with v(1, 1) and
moving up the first column to v(1, k), then jumping to v(2, 1) and moving up
the second column as far as possible, etc.

Moreover, there will be exactly

m, —m,_, diagonal entries of order k

(m,, —m,_,)—(m,—m,_ )=2m,_, —m, —m,_,  diagonal entries of order k-1

2m, —m, —m, diagonal entries of order 2
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2m, —m, diagonal entries of order 1.
as can be directly read off from the table.
In particular since the numbers m,,m,,---,m, are uniquely determined by T.
Finally the identity
m, = (mk -m,_, )+ (2mk_1 -m, —m,_, )+ R (2m2 —m, —m, )+ (2m1 —mz)
shows that the nullity m of T is the total number of diagonal entries of T.
Theorem: Let 7:V —»V be linear and X =ker7T"*, Y =ker7T"" and Z =kerT",
then XcYcZ. Suppose {u,u,,-u}, iy, u,,v,v,,,v,} and
{wuysu v, vy, v Wy, w,,-,w, } are bases of X, Y and Z respectively.
Then show that S ={u,,u,,---,u,,T(w,),T(w,),---,T(w,)} is contained in Yand is
linearly independent.
Proof: From the above theorem, we can easily write T(Z)cY and hence
ScyY.
Now suppose S is linearly independent, then there exists a relation

au, +au,+---+au + blT(w1 )+ sz(w2 )+ et b,T(w, ) =0

where at least one coefficient is non-zero, Further, since {u,} is linearly

independent, at least one of the », must be non-zero. Transposing, we find

b,T(w,)+b,T(w,)+---+bT(w,)=-au —au, —-—au, e X =kerT">
Hence T2(b,T(w,)+b,T(w,)+---+bT(w,))=0
Thus, T (byw, +b,w, +---+b,w,)=0 and so

bw, +b,w, +---+bw, €Y =kerT"
Since {u,,v j} generate Y, we obtain a relation among the u,,v; and w, where
one of the coefficients i.e., b,, is not zero. This contradicts the fact that

lu,,v j,wk} is independent. Hence S must also be linearly independent.
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4.9: Jordan Canonical Form

An operator T can be put into Jordan canonical form if its characteristic and
minimal polynomial factor into linear polynomials. This is always true if K
is the complex field C. In any case, we can always extend the base field K to
a field in which the characteristic and minimum polynomial do factor into
linear factors; thus in a broad sense every operator has a Jordan Canonical

Form. Analogously, every matrix is similar to a matrix in Jordan Canonical

form.
Exercise: Let
01 1 01 001 11
001 11 00 0 0O
A=|0 0 0 0 O|,then A>=/0 0 0 0 O|and A’*=0
00 0 0O 00 0 0O
00 0 0O 00 0 0O
Hence A is nilpotent of index 2.

Find the nilpotent matrix M in canonical form which is similar to A.
Solution: Since A is nilpotent of index 2, M contains a diagonal block of
index 2 and none greater than 2. Note that rank A = 2; hence nullity of A =
5-2 = 3. Thus M contains 3 diagonal blocks. Accordingly M must contain 2
diagonal blocks of order 2 and 1 of order 1; that is

0O 1L : 0 O 0

0 0 : 0 O 0
M=0 0 1 0

0 O 0 O 0

0 0 :

0 000 0 : O

Theorem: let T:V—V be a linear operator whose characteristic and

minimal polynomials respectively are
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AW)=(e=A)" (= A,)" (= A4)" and mle)=(e=2)" (= 2,)" (= 2,)"
where the A,'s are distinct scalars. The T has a block diagonal matrix

representation J whose diagonal entries are of the form

A 1 0 -« 0 0

04 1 « 0 0
J, =

0 0 0 —« A4 1

0 0 0 - 0 A

1

For each 4, the corresponding blocks J, have the following properties:
1) There 1s at least one J, of order m,; all other J, are of the order
<m,.
ii)  The sum of the orders of the J, is n,.
iii)  The number of J, equals the geometric multiplicity of 4 .

iv)  The number of J,; of each possible order is uniquely determined by

T.

Proof: By the Primary Decomposition theorem, T is decomposable into
operators 7,,T,,---,T.,i.e., T=T, ®T,®---®T,; where (t—A)" is the minimal
polynomial of 7,. Thus in particular,

(T, = 41)" =0,-,(T, - 2.1)" =0
Set N. =T, —AI;thenfor i=12,--,r

T,=N,+A1 where N =0
That is 7, is the sum of the scalar operator 4/ and a nilpotent operator N,,
which is of index m,, Since (t—4.)" is the minimal polynomial of T;.
Now by above theorem on nilpotent operators, we can choose a basis so that

N, is in canonical form. In this basis, 7, = N, + 4.1 is represented by a block

L

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KASHMIR SRINAGAR-190006 31



Canonical forms Khanday M A

diagonal matrix M, whose diagonal entries are the matrices J,. The direct
sum J of the matrices M, is in Jordan canonical form and by remark-3, is a

matrix representation of T.

Lastly, we must show that the blocks J, satisfy the required properties.
Property (1) follows from the fact that N, is of index m,. Property (ii) is true

since T and J have the same characteristic polynomial. Property (iii) is true

since the nullity of N, =T, —A.1is equal to the geometric multiplicity of the
eigenvalue A . Property (iv) follows from the fact that the 7, and hence the
N, are uniquely determined by T.

Remark: The matrix J appears in the above theorem is called the Jordan

Canonical form of the operator T. A diagonal block J, is called a Jordan
Block belonging to the eigenvalue 4.

Observe that

A 1 0 - 0 0y (4 0 0 -~ 0 0) (0 1 0 - 0 0

0 4 1 -« 0 0] |0 A4 O « 0 O[]0 0 1 - 0 0

0 0 0 A 1]]0 0 0 -« 4 0|0 0 0 « 0 1

0o 0 0 -~ 0 A 0o 0 0 - 0 A o 0 o0 -~ 0 O
ie., J;, =AI+N

where N is the nilpotent block appearing in the previous theorem. In fact
we have proved the same in the above theorem by showing that T can be
decomposed into operators, each the sum of a scalar and a nilpotent
operator.

Example: Suppose the characteristic and minimum polynomial of an
operator T are respectively

At)=(-2)"(r-3) and m(r)=(r—2)* (¢ -3)’
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Then the Jordan canonical form of T is one of the following matrices
2 1 2 1
0 2 0 2

0o 2 : or

The first matrix occurs if T has two independent eigenvectors belonging to
its eigenvalue 2; and the second matrix occurs if T has three independent
vectors belonging to 2.

Exercise: Determine all possible Jordan canonical forms for a linear
operator T:V —V whose characteristic polynomial is A(r)=(r—2)’(r-5)°.
Solution: Since r-2 has exponent 3 in A(f) must appear three times on the

main diagonal. Similarly 5 must appear twice. Thus, the possible Jordan

canonical forms are:

- : o, f
2 1 2 : ;
o 2
5 1
5 1 501
. 5 5 5
Q) ? (ii) (iii)
4 A
2 1 5
2 1 2
2 2
5
) W (vi) i
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Exercise: Determine all possible Jordan canonical forms J for a matrix of
order 5 whose minimal polynomial is m(t) = (r —2)°
Solution: Clearly J must have one Jordan block of order 2 and the others

must be of order 2 and 1. Thus, there are only two possibilities

21

or IJ=

Note that all the diagonal entries must be 2. Since 2 is the only eigenvalue.

Cyclic Subspaces
Let T be a linear operator on a vector space V of finite dimension over K.
Suppose v(20)e V, the set of all vectors of the form f(T)(v), where f(r)
ranges over all polynomials over K, is a T-invariant subspace of V called the
T-cyclic subspace of V generated by v; we denote it by Z(v,7) and denote
the restriction of T to Z(v,T) by T,. We could equivalently define Z(v,T) as
the intersection of all T-invariant subspaces of V containing v.
Remark 5: Consider the sequence

v, T0), T*(), T°(v), -
of powers of T acting on v. Let k be the lowest integer such that 7*(v) is
linear combination of those vectors which precede it in the sequence; say

T (v)=-a, 7' (v)——aT(v)-a,v
Then m(t)=t"+a_t"" ++at+a,
is the unique monic polynomial of lowest degree for which m (T)v)=0, we

call m (r) the T-annihilator of v and Z(v,T).
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Remark 6: Suppose Z(v,T), T, and m,(t) be defined as above, then
i) The set {v, T(v), ---,7*"(v)} is a basis of Z(v,T); hence dimZ(»,T) =
k
ii) ~ The minimal polynomial of T is m,(z).

ii1)  The matrix representation of 7, in the above basis is

v

0 0 0 - 0 -g
1 0 0 « 0 -q
01 0 -« 0 -a

C=
00 0 - 0 —a,,
0 0 0 - 1 -qa

The matrix C is called the companion matrix of the polynomial m (r)

Proof: (i) By definition of m (r), T,(v) is the first vector in the sequence
v, T(v), T*(v), T?(v), --- which is a linear combination of those vectors
which precede it in the sequence; hence the set B={y, T(v), ---, 7" (v)} is
linearly independent. We now only have to show that Z(v,T)=L(B), the
linear span of B. But we have T*(v)e L(B). We prove by induction that
T"(v)e L(B) for every n. Suppose n>k and T"'(v)e L(B), i.e., T""'(v) is a
linear combination of v, T(v), ---,7**(v) . Then T"(v)=T(r""(v)) is a linear
combination of T(v), ---,T*(v), but 7*(v)e L(B); hence T"(v)e L(B) for every n.
Consequently f(T)(v)e L(B) for any polynomial f(r).

Thus Z(v,T)=L(B) and so B is a basis as claimed

(ii) Suppose m(t)=1" +b_,t*" +---+b,t +b,is a minimal polynomial of 7,. Then
since ve Z(v,T)

0= m(T )(v) = m(T)(v) =T (v)+ b T (v)+ ~+bT +byv

v
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Thus, 7¢(v) is a linear combination of v, T(v),---, T*"'(v) and therefore k<.
However, m (T)=0 and so m (T,)=0. Then m(tr) divides m (t) and so s<k.
Accordingly s =k and hence m(t)=m,(z).

(ii1) we have

T,(v)= T(v)

T (T(v)= T*(v)

T,(r2(v))= T (v)
Tk(v):Tv(Tk_l(v))=—aov—alT(v)—asz(v)— _ak—lTk_l(v)

By definition, the matrix 7, in this basis is the transpose of the matrix of

v

coefficients of the above system of equations; hence it is C, as required.

4.10: Rational Canonical Form

In this section, we present the rational canonical form for a linear operator
T:V —V. We emphasize that this form exists even when the minimal
polynomial can not be factorized into linear polynomials [Recall this is not
the case in Jordan canonical form].

Lemma: Let 7:V —»V be a linear operator whose minimal polynomial is
f(¢)" where £(t) is a monic irreducible polynomial. Then V is the direct sum

V=2, T)®Z(v,T)®---®Z(v,,T)

of T-cyclic subspaces Z(v,,T) with corresponding T-annihilators

f(t)”l,f(t)”z,...,f(t)”z’ n:n12n22...2nr
Any other decomposition of V into T-cyclic subspaces has the same number

of components and the same set of T-annihilators.
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We emphasize that the above lemma does not say that the vectors v, or the
T-cyclic subspaces Z(v,,T) are uniquely determined by T; but it does not say

that the set of T-annihilators are uniquely determined by T. Thus T has a

unique matrix representation

where ¢, are companion matrices. In fact, are the companion matrices to the
polynomial £(r)"

Theorem: Let T:V —V be linear. Let W be a T-invariant subspace of V and
T the induced operator on V/W . Prove (i) The T-annihilator of veV
divides the minimal polynomial of T. (ii) The T -annihilator of veV/W
divides the minimal polynomial of T.

Proof: (i) The T-annihilator of veV is the minimal polynomial of the
restriction of T to Z(v,T) and therefore as we know, it divides the minimal
polynomial of T.

(ii) The T -annihilator of veV/W divides the minimal polynomial of T,
which divides the minimal polynomial of T.

Note: In case the minimal polynomial of T f(r)" where f(t) is a monic
irreducible polynomial, then the T-annihilator of ve vV and T -annihilator of
ve V /W are of the form f(r)"; where m<n.

Remark: Let 7:V -V be a linear operator with minimal polynomial
m(t)= f,(e)" f,)"--- f.(t)"; where f.(r) are distinct monic irreducible

polynomials. Then T has a unique block diagonal matrix representation
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Csl

c

s,

where c;are companion matrices. In particular, the c,are the companion
matrices of the polynomials f,(¢)" ,

where Mm=n,2n,=2"2n

02 2, m, =N, 20N

1rl K sl 52 =0T Mg

The above matrix representation of T is called its rational canonical form.
The polynomials f,(¢)" are called the elementary divisors of T.

Example: Let V be a vector space of dimension 6 over R, and let T be a
linear operator whose minimal polynomial is m(t)= (> —¢+3)¢—2)*. Then the

rational canonical form of T is one of the following direct sum of companion

matrices
(i) (> —r+3)ecl® -r+3)@C(-2)
(i) c(> -r+3)@C(t-2) ®C(t-2)
(iii) c(>—r+3)@ct-2) ®@clt-2)®C(t-2)

where C(f(r)) is the companion matrix of f(¢); that is

0 —3 0 —3 0 s
1 1 11 .
0 -3 S -
P 1 4 1 4
0 —4 =
0 -4 5
1 4 {4 5
(1) (i1) (iii)
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Exercise: Let V be a vector space of dimension 7 over R, and let T:vV —»V
be a linear operator whose minimal polynomial is m(r)= (> +2)¢+3)’. Find

the all possible rational canonical forms for T.

Solution: The sum of the degrees of the companion matrices must add up to
7. Also, one companion matrix must be (t2 +2) and one must be (r+3)’. Thus
the rational canonical form of T is exactly one of the following direct sum of
companion matrices:

) cl®>+2)@cl+2)®c(-3)

(i) cl>+2)@Ce+3) @ C(r+3)

(iil) cl>+2)@c(t+3) ®@C(t+3)@ C(r +3)

1.€.,
1 0 1 0 1 0
0 -2 0o 0 -27 0 0 -27
1 0 1 0 =27 1 0 =27
0 0 =27 01 -9 01 -9
1 0 =27 0 -9 -3
01 -9 0 1 -6 0 -3
(1) (i1) (ii1)

Exercise 1: Find all possible rational canonical forms for:

1) Matrices of order 6 with minimal polynomial (> +3)¢+1)*
ii)  Matrices of order 6 with minimal polynomial (z+1)’
i) Matrices of order 8 with minimal polynomial (t2 + 2)2 (r+3)

Exercise 2: Find the rational canonical form of the Jordan block

A 0 0

S O

0 I 0
0 A1
0 0 4
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4.12: Quotient Spaces:
Let V be a vector space over a field K and W be a subspace of V. If v is any
vector in V, we write v + W for the set of sums v+ w with we W and veV
veW={v+W: weWw}
These sets are called the cosets of W in V.
Example: Let W be the subspace of R* defined by
W ={la, b): a=0b}
i.e., W is the line given by the equation x —y = 0. We can view v+W as a
translation of the line, obtained by adding the vector v to each point in W.
v+W is also a line and is parallel to W. Thus the cosets of W in R* are

precisely all the lines parallel to line.

Exercise: Let W be a subspace of a vector space V. Show that the following
are equivalent:

) uev+W 1) u—veW 1) ve u+Ww
Solution: Suppose ue v+W , then there exists w, e W such that u=v+w,
hence u—v=w,ew
Conversely, suppose u—ve W, then u—v=w,, where w,e W.

Hence u=v+w,ev+W . Thus (i) and (ii) are equivalent.
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We also have u—ve W if and only if —(u—v)=v-ue W if and only if
veu+W
Thus (ii) and (iii) are also equivalent.
Exercise: Prove that the cosets of W in V partition V into mutually disjoint
sets, 1.€,
(i)  Any two cosets u + W and v + W are either identical or disjoint; and
(ii)) Each veV belongs to a coset; in fact ve v+W .
Furthermore, u+W =v+W if and only if u—ve W, and so (u+w)+W =v+W
for any wew .
Proof: Let ve V, we have v—v+0ev+W as 0e W proving (ii).
Now suppose the coset u+W and v+W are not disjoint, say the vector x
belongs to both. Clearly, u —xe W and x—ve W . For any w,e W, let u+w,
be any element in u+W .
Clearly, (w—w,)-v=(@u—-x)+(x-v)+w,eW
Thereby, it follows that u +w, € v+ W and hence the coset u+W is contained

in v+W. Similarly v+W cu+W and thus v+W =u+W
The last statement follows from the fact that v+W =u+W if and only if

ue v+W thatis equivalentto u—ve W.

Home Assignments
Exercise 1: Let W be the solution space of homogeneous equation
2x+3y+4z=0. Describe the cosets of W in R’
Exercise 2: Given a subspace W of a vector space V, show that the natural
map 7:V —V /W defined by n(v)=v+W is linear.
Exercise: Let W be a subspace of a vector space V. Suppose {w,,w,,---,w,} is

a basis of W and the set of cosets {v,,7,,---,v,} where v, =v,+W a basis of the
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quotient space is. Show that B={v,,v,,---,v,,w,w,,---,w } is a basis of V.
Thus dimV = dimW + dimV/W
Solution: Suppose ue V, since { j} is a basis of V/W .
u=u+W=ay +a,v, +---+ayv,
Hence u=ayv,+ay,+--+ayv, +w, where we W
Since {w.} is a basis of W
u=ay, +a,y,+--+ayv, +bw, +b,w, +--+bw,
Accordingly B generates V.
We now show that B is linearly independent.
Suppose v, +av, ++e v, +dw +d,w, +-+dw =0
Then eV, ooy, =0=W
Since {7 j} is independent, then c’s are all zero. Therefore, we get
dw, +d,w,+--+dw =0. Also {w} is independent. Therefore all d’s are

zero and hence B is a basis of V.
Theorem: Suppose W is a subspace invariant under a linear operator
T:V—V. Then T induces a linear operator T on V/W defined by
T(v+W)=T(v)+W . Moreover, if T is a zero of any polynomial, then so is T,
thus, the minimal polynomial of T divides the minimal polynomial of T.
Proof: We first show that 7 is well defined, i.e., if u+W =v+W, then
Tw+wW)=T(v+W),If u+W =v+W, then u—ve W and since W is T-invariant,
Tu—v)=Tw)+T(v)e W
Accordingly, T(u+W)=T(u)+W =T(v)+W =T (v+W) as required
We next show that T is linear. we have

T+W)+W+W)=T(U +v+W)=Tu+v)+W =T(u)+T(v)+W

=T(u)+W+TW)+W=Tu+W)+T(v+W)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KASHMIR SRINAGAR-190006 42



Canonical forms Khanday M A

and similarly, we can show that
T(ku+W)=T(ku+W)=T(ku)+W = kT (u)+W
=k(T(u)+W)=kT (u+W)
Thus T is linear.
Now for any coset u + W in V/W,

T2 w+W)=T>u)+W =TT @) +W =T (T @)+ W) =TT (u+W))=T>u+W)

Hence 7> =77 . Similarly, 7" =T" for any n.
Thus for any polynomial

fe)=ap"++a, =) at'

FONu+W)= fI))+W = Y aT W) +W =Y a, (1 )+ W)

=Zai7i(u+W)=Zai T' (u+W)

=(za,. 7 j(u+W): TN+ w)
and so f[fj: £(T). Accordingly if T is a root of f(r) then

fM)=0=w=f(T), ie., T is also a root of £(t).

Theorem: Let T:V—V be a linear operator whose characteristic
polynomial factors into linear polynomials. Then V has a basis in which T is
represented by a triangular matrix.

Proof: To prove this result, we use induction on the dimension of V. If
dimV = 1, then every matrix representation of T is of order 1 which is
clearly triangular.

Now suppose dimV = n > 1 and that the theorem holds for spaces of
dimension less than n. Since the characteristic polynomial of T factors into

linear polynomials, T has at least one eigen value and so at least one non-
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zero eigenvalue v, say T(v)=aq,v. Let W be the 1-dimensional subspace
spanned by v. Set V =V /W, we have dimV =dimV —dimW =n~-1. Note also
that W is invariant under T. Theorem by previous theorem T induces a linear
operator 7 on V whose minimal polynomial divides the minimal polynomial
of T. since the characteristic polynomial of T is a product of linear
polynomials, so is its minimum polynomial; hence so are the minimum and
characteristic polynomials of 7. Thus V and T satisfy the hypothesis of the
theorem. Hence by induction, there exists a basis {v,,7,,---,v,} of V such that

T(,)=a,v,

T(7,)=ay,v, +a,v,

..............................

=

(v,)=a,v, +a,v, ++a,v,
Let v,,v,,~--,v, be elements of V which belong to the cosets v,,v,, v,
respectively. Then {v,v,,---,v, } is a basis of V. Since T (v,)=a,,v,, we have
T(v,)-ay,v, =0 and so T(v,)-a,v,e W
But W is spanned by v, hence T(v,)-a,,v, is a multiple of v, say
T(v,)-a,v, =a,v and so T(v,)=a,v+a,,v,
Similarly, for i=3,4,---,n
T(v,. ) =a,v+a,v, +--+a,v,
Thus
T(v) =a,v
T(v2 ) =a,v+ta,v,
T(v ) =a,v+a,v, +--+a,v,

and hence the matrix of T in this basis is triangular.
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4.13: Bilinear Forms
Let V be a vector space of finite dimensions over a field K. A bilinear form
on Visamap f:VxV — K which satisfies

i) flau, +bu,, v)=af (u,, v)+bf (u,, v)

i) flu, av,+bv,)=af(u, v,)+bf(u, v,)
for all a,be K and all u, ,v,e V. We express condition (i) by satisfying f is
linear in the first variable, and condition (ii) by satisfying f is linear in the
second variable.
Example: Let ¢ and o are arbitrary linear functionals on V. Let
f:VxV = K be defined by f(u, v)=@(u)o(v). The f is bilinear because ¢ and
o are both linear. (such a bilinear form f turns out to be the tensor product
of ¢ and o and so is sometimes written as f =¢®o ).
Example 2: Let f be the dot product on R"; i.e,
fu, v)=uv=ab, +ab, +---+a,b, where u=(a,), v=(b,).
Example 3: Let A= (a,.j) be any matrix of order n over a field K. Then A

may be viewed as a bilinear form f on K" by defining

a,  Ap o 4y | Wy

a a oo a y

‘ 21 2 2 2
f(X,Y)=X"AY =(x,,x,,--,x, _
anl anZ ann yn

n
= zaijxiyj =aux,y ta,xy,+--+a,x,y,
=

The above formal expression in variables x, , y, is termed the bilinear
polynomial corresponding to the matrix A.
Remark: Let B(V) denote the set of bilinear forms on V. A vector structure

is placed on B(V) by defining f + g and kf by:
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(f +&)u,v)= flu,v)+ glu,v)
(kf )= kf (u,v) for any f,ge B(V) and ke K

Theorem: Let V be a vector space of dimension n over K. Let {¢,.4,,---.4, }
be a basis of the dual space V". Then {f,.j; i, j=12,---,n} is a basis of B(V)

where f, is defined by f, (u,v)=¢,(u)¢,(v). Thus in particular, dim B(V)=n".

Proof: Let {e,,e,,-,e,} be a basis of V dual to {g,}, we first show that {f, }
spans B(V). Let f e B(V) and suppose fle.e,)=a,, where f=Ya,f,. It

suffices to show that f(e,.¢,)=> a, f;(e,.¢,) for s,1=12,---.n. We have

(Zaijfijxes’et): Zaijﬁj(es’er)zzaijﬁ'(e )¢ (e )
_Zaljaﬂé‘jl‘ _a _f(es’et)
as required. Hence {f/} spans B(V).

It remains to show that {f/} is linearly independent. Suppose > a, f; =0 for

s, t=12,---.n
e,): (Zaijfijxes’et):

The last step follows as above. Thus {f/} is independent and hence is a basis

of B(V).

Exercise 1: Given f(u,v)=3x,y, —2x,y, +5x,y, +7x,y, —8x,y, +4x,y, — x,y,
where u=(x.x,,x,) and v=(y,,y,,y,). Express fin matrix notation.
Exercise 2: Let A= (a,.j) be any matrix of order n over a field K. Show that

the following map f is bilinear form on K" ; f(X,Y)=X'AY
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Bilinear form and Matrices

Let f be a bilinear form on V, and let {e,.e,,---,e, } be a basis of V. Suppose

u,veV such that u=ae, +ae, +---+ae, and v=be, +b,e, +---+b e,

n-n?

Then f(u.v)= f(ae, +ae, +---+a,e blel+b262+-~-+bnen)=zn:aibjf(ei,ej)
ij

Thus f is completely determined by the »*> values fle,,e j). Thus matrix
A= (aij ), where a; = f e..e j) is called the matrix representation of f relative to
basis {e,} or simply the matrix of f in {e, }. It represents f in the sense that
bl
)= ab, flene, )= (a0, )4 | =il abL
b

n

for all u,veV.
Definition: A matrix B is said to be convergent to a matrix A if there exists
an invertible (or non-singular) matrix P such that B=P'AP.

The rank of the bilinear form f on V is defined to be the rank of any matrix
representation. We say that f is degenerate or non-degenerate according as to
whether rank(f) < dimV or rank(f) = dimV.

Exercise: Let f be a bilinear form on R* defined by
SO x,). (3 32 )) = 20y, =33, + 2,7,
i) Find the matrix A of f in the basis {x, = (1,0),u, = (1,1)}.
ii)  Find the matrix B of f in the basis {v, =(2,1),v, = (1,-1)}
Solution: Set A= (a,.j) where a; = f (o0, j), we can easily calculate the values

of all the entries of the matrix A.

2 . . . .
Thus, A= (2 0 jls the matrix of f in the basis {uuj}
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(iii)) Similarly, B = ((3) zj 1s the matrix of f in the basis {v,.,v j}

Definition: Let {e,,e,,---,¢,} be a basis of V and let {f,, f,,--, f,} be another
basis. Suppose

fi=a,e +aye, +---+a,e,

fy=aye +aye, +--+a,.e,

f,=a,¢e +a,e, +-+a,e,
The the transpose P of the above matrix of coefficients is termed the

transition matrix from the old basis {e,} to the new basis {f,}

a;; 4y a,
p= A, a4y a,,
aln a2n ann

Since the vectors {f.} are linearly independent, the matrix P is invertible. In
fact, its inverse P™' is the transition matrix from the basis {f,} back to the
basis {e, }.
Example: Consider the following two basis of R

{e, =(L0), ¢, = (01)} and {f, =(L1). f, =(~10)}
Then fi=01)=10)+(0]1)=e¢, +e,

fo =(=1,0)=~(1,0)+0(0,1) = —¢, +0.e,

Hence the transition matrix P from the basis {e,} to the basis {f,} is

1 -1
pP=
b o)
We also have

e, =(1,0)=0(11)- (-1,0)=0.f +(-1)£,
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e, =(0.1)=L1)+(-10)=f + £,

Hence the transition matrix Q from the basis {f,} back to the basis {e,} is

o (0!
-1
Observe that P and Q are invertible, i.e., PQ =1
Theorem: Let P be the transition matrix from a basis {e,} to a basis {f,} in a

vector space V. Then for any ve V, P[], =[v],. Also [v], =P™'[v],

Proof: Suppose for i=1,2,---,,n,

n
fi=a,e +a,e,+-+a,e = Za
j=1

i€

Then P is the n-square matrix whose jth row is

@, +a,, +-+a,) (D)
Also suppose v =k, f, +k,f, +---+k, f, :Zn:kif[
i=l

Then writing a column vector as the transpose of a new vector,
[V]f :(knkz""kn)’ ..(2)

Similarly for f, in the equation for v,

J=L j=1

n
=Z:(aljk1 ta, .k, +-+ak, b,

=
Accordingly, [v] is the column vector whose jth entry is

aj ik, +a,k, +--+a,k, ...(3)
On the other hand, the jth entry of P[v], is obtained by multiplying the jth
row of P by [v],, i.e., (1) by (2). But the product of (1) and (2) is (3); hence

P[v], and [v] have the same entries and thus P[], =[v],
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Furthermore, multiplying the above by P gives P'[v], = P7'P]y], =[v],.
Theorem: Let P be the transition matrix from one basis {e, } to a basis {¢}. If
A is the matrix of f in the original basis {e,}, then B = P'AP is the matrix of f
in the new basis {¢/}.
Proof: Let u,ve V, since P is the transition matrix from {e, } to a basis {e/},
we have Plu], =[u], and P[v], =[v].; hence [u]. =[u]. P’. Thus

fluv)=[u] Alv], = [u], PrAPD],

Since u and v are arbitrary elements of v. P'AP is the matrix of f in the basis

.

Alternating Bilinear Forms
A bilinear form f on V is said to be alternating if

1) f(u,v) =0 for any ve V. If f is alternating, then

0= flu+vu+v)= flu,u)+ flu,v)+ f(v,u)+ f(v,v) and so

i1) f(u,v) = - f(v,u) for every u,ve V.
A bilinear form which satisfies (ii) is said to be skew-symmetric (or anti-
symmetric). If 1+1# 0 in K, then condition (ii) implies f(v,v)=-f(v,v) which
implies condition (i). In other words, alternating and skew symmetric are
equivalent when 1+1#0.
Theorem: Let f be an alternating bilinear form on V. Then there exists a

basis of V in which f is represented by a matrix of the form
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S

[o]

[o]

1) . . . "
Moreover, the number of ( 0 Oj is uniquely determined by f ( because it is

equal to %[mnk( 13!

Proof: If f = 0, then the theorem is obviously true, Also if dimV = 1, then
fku,kyu)=kk,f(u,u)=0 and so f=0.

Accordingly, we can assume that dimV >1 and f =0

Since f #0, there exists non-zero wu, = ku, u,,u, €V such that f(u,,u,)#0. In

fact multiplying «, by an appropriate factor, we can assume f(u,,u,)=1 and

so f(u,,u,)=-1. Now u, and u, are linearly independent; because if say

u, = ku,, then

floyuy)= fu, ku,)=kf (u,,u,)=0. Let U be the subspace spanned by u, and

u,,ie., U=Lu,u,).

Note: (i) the matrix representation of the restriction of f to U in the basis

fuu,} s (0 1}

-1 0
(i) If ue U say u=au, +bu,, then

f(upuz): f(au1 +bu2’u1):_b
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fluy,u,)= flau, +bu,,u)=a
Let W consists of those vectors we W such that f(w,u,)=0 and f(w,u,)=0.
Equivalently

W={weV: fwu)=0 for everyuec U}

We claim that v=U®Ww It is clear that U W ={0}, and so it remains to
show that v =U+W . Let ve V.
Set u=fvuu, — f(v,u,Ju, and w=v-u (D
Since u is a linear combination of «, and u,, ue U . We show that we W . By
(1) and (ii), f(u,u,)= f(v,v,);
Hence fwu)=flv-—uu)=f.u)- fluu)=0

Similarly, flu,u,)= f(v,u,) and so

(
flwauy)= flo—uu,)= f(vu,)= flu,u,)=0

Then we W and so by (1), v=u+w, where ue U and weWw .

The shows that V =U +W and therefore Vv=U ®W.

Now the restriction of f to W is an alternating bilinear form on W. By
induction, there exists a basis {u,u,,---,u,} of W in which the matrix

representing f restricted to W has the desired form. Thus {u,,u,,---,u,} is a

basis of V in which matrix representing f has the desired form.

4.14: Symmetric bilinear form

A bilinear form f on V is said to be symmetric if
fluv)= fvu)

for every u,ve V. If A is a matrix representation of f, we can write

F(x.¥)=x'Ay =(x'AY) =v'A'X
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(we use the fact that X'AY is a scalar and therefore equals its transpose).
Thus if f is symmetric,

Y'A'X = f(X,Y)=f(Y,X)=Y"AX
and since this is true for all vectors X and Y, it follows that A= A" or A is

symmetric. Conversely if A is symmetric, then f is symmetric.

Home Assignments

Exercise: Find the symmetric matrix which corresponds to each of the
following quadratic polynomials

a) g(x,y)=4x* —6xy -7y

b) glx,y)=xy+y’

¢) qlx,y,2)=3x"+4xy— y> +8xz—6yz + 2°

d) g(x,y)=x>=2yz+xz
Theorem: Let f be a symmetric bilinear form on V over K (in
which1+1#0). Then V has a basis {v,,v,,---,v,} in which f represented by a
diagonal matrix, i.e., f(v,.,vj):o for i=j.
Proof: If f = 0 or if dimV = 1, then theorem clearly holds. Hence we can

suppose f #0and dimV = n >1. If ¢(v)= f(v,v)=0 for every veV, then the
polar form of f: f(u,v)=%(q(u+v)—q(u)+ g(v)) implies that f = 0. Hence we

can assume there is a vector v,eV such that f(v,v,)#0. Let U be the
subspace spanned by v, and let W consist of those vectors veV for which

f(VpV):Oa
We claimthat V=U®W

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KASHMIR SRINAGAR-190006 53



Canonical forms Khanday M A

(1) suppose ueUNW, since ueU, u=kv, for some scalar ke K.
Since ueW, 0=f(uu)=flkv,kv,)=k>f(v,,v,) But f(v,,v,)#0,
hence k =0 and therefore u = kv,, thus U nW ={0}

(ii)) Toprove V=U+W.LetveV, set

AUt (1)

f(VpV) 1

Then f(VpW): f(V1’V)_mf(V1’V1):0

w=v—

Thus we W. By (1), v is the sum of an element of U and an element of
W. Thus vV =U +W . Therefore (i) and (ii) implies V =U ®W .
Now f restricted to W is a symmetric bilinear form on W. But dimW= n-1;
hence by induction there is a basis {v,,v,,---,v,} of W such that f(v,,v,)=0
for i#;j and 2<i, j<n. But by the very definition of W, f(vl,vj):o for
j=23,---,n. Therefore the basis {v,,v,,~--,v,} of V has a required property

that f(v,,v,)=0 for i# ;.

1 2 -3
Example: Let A=| 2 5 -4/, a symmetric matrix. It is convenient to
-3 -4 8

form the block matrix (A4,1):

We have
1 2 -3:100
(A)=| 2 5 -4 :010
-3 -4 8 0 0 1

Applying operations R, ——2R, +R, and R, — 3R, +R, to (A,I), and then the

corresponding operations C, - -2C, +C, and C, — 3C, +C, to A, to obtain
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2 -3 : 1 00 100 : 1 00
01 2 ¢ -21 0O|landthen|{0O 1 2 : -2 1 0
02 -1: 3 01 02 -1: 3 01

We next apply the operations R, —-2R, +R, and then the corresponding

operation C, — -2C, + C, to obtain,

10 0 : 1 0 O 1o 0 : 1 0 O
01 2 -2 1 O|andthen|O0O 1 O : -2 1 0
00 -5: 7 =21 00 -5: 7 =21

Now A has been diagonalized. We set

1 -2 7 1 0 O
P={0 1 -2| andthen P'AP=|0 1 0
0 O 1 0 0 -5

Definition: A mapping ¢:V — Kis called quadratic form if ¢(v)= f(v,v) for
some symmetric bilinear form on V.
We call q the quadratic form associated with the symmetric bilinear form f

if 1+1=0 in K, then f is obtainable from q according to the identity
flu,v)= % (g(u+v)—q(u)-q(v)) (polar form of f)

Remark: If f is represented by a symmetric matrix A:(aij), then q is

represented in the form

a; a4y a,, | *i
a a a X
¢(X)= f(X.X) = XTAX = (5,00, ) 20T S
anl anZ ann xn

2 2 2
=Zaijxixj=a11xl +a,x,” +--+a,x, +22aijxixj
ij

i<j
The above formal expression in variable x, is termed the quadratic

polynomial corresponding to the symmetric matrix A. Observe that if the

matrix A is diagonalizable, then q has the diagonal representation
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gX)=X'AX =a,x” +ayx,” +-+a,x’
Example: Consider the following quadratic form on R’

q(x, y) =2x —12xy +5y2

Home Assignment
Exercise: Let q be the quadratic form associated with the symmetric bilinear

form f. Verify

f(u,v)z%(q(u+v)—q(u)—q(v)) (Assume 1+1%0)

4.15: Real Symmetric bilinear form

In this section, we treat symmetric bilinear forms and quadratic forms on
vector spaces over the real field R.

Theorem: Let f be a symmetric bilinear form on V over R. Then there is a
basis of V in which f is represented by a diagonal matrix, and every other
diagonal representation of f has the same number of positive entries and the
same number of negative entries.

Proof: We have by previous theorem, that there exists a basis {u,,u,,--,u,}

of V in which f is represented by a diagonal matrix, say with P positive and
N negative entries. Now suppose {w,,w,,---,w, }is another basis of V in which
f is represented by a diagonal matrix, say with P’positive and N’ negative
entries. We can assume without loss of generality that the positive entries in
each matrix appear first. Since rank(f)=P+N =P +N’, it suffices to prove

that P=P’.
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Let U be a linear span of u ,u,,--,u, and let W be a linear span of
WposWppn»osw, . Then f(v,v)>0 for every non-zero ve U and f(v,v)<0 for
every non-zero ve W . Hence U nW ={0}. Note that dimU =P, dimW =n—P’.
Thus
dim(U +W)=dimU +dimW —dim({U "W)=P+(n—P)-0=P—P +n
But  dim(U +W)<dimV =n.Hence P-P +n<n or P<P’,
Similarly P> P’ and therefore P =P’ as required
Remark: The above theorem and proof depend only on the concept of
positivity, thus the theorem is true for any subfield K of the real field R.
Definition: A real symmetric bilinear form f is said to be non-negative semi-
definite if ¢(v)= f(v,v)>0 for every vector v and is said to be positive
definite if ¢(v)= f(v,v)> 0for every vector v#0.
Remark: By the above theorem, the difference S = P — N is called the
signature of f. Also
1) f is non-negative semi-definite if and only if S = rank(f)
ii)  fis positive definite if and only § =dim(V)

Example: Let f be the dot product on R", i.e.,

flu,v)=uy= ab +a,b,+---+a,b,
Where u=(u,) and v=(v,).
Note that f is symmetric, since

fl,v)=uv=vu=fv,u)
Furthermore, f is positive semi-definite because

fluu)=uu=a’+a,+--+a,’>0; where u=0
Corollary: Any real quadratic form q has a unique representation in the

form
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2 2 2 2 2 2
q(xl,xz,...,xn)le +x, X X X, et X,

The above result for real quadratic forms is some times referred to as the

Law of Inertia or Svylvester theorem.

Home Assignment
Exercise: For each of the following real symmetric matrices A, find a non-

singular matrix P such that P'AP is diagonal and find its signature.

1 -3 2
i) A=[-3 7 =5
2 -5 8
0 1 1
11) A=|1 -2 2
1 2 -1
a,
Exercise: Let A= 2 , a diagonal matrix over K, Show that
an
1) For any non-zero scalar k ,k,,---,k, € K, A is congruent to a

diagonal matrix with diagonal entries ak,’;
i1)  Ifkis a complex field C, then A is congruent to a diagonal matrix
with only 1’s and O’s as diagonal entries;
ii1)  If k is the real field R, then A is congruent to a diagonal matrix
with only 1’s, -1’s and 0’s as diagonal entries.
Solution:

1) Let P be the diagonal matrix with diagonal entries k,, then
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k, a, k, ak,’

P'AP = k2 . @ _ ky _ — a,k,

2
k a k Lk
i1)  Let P be the diagonal matrix with diagonal entries

) _{1/\/2 if a #0

i a =0
Then P'APhas the required form.

ii1)  Let P be the diagonal matrix with diagonal entries

b’:{u\/m if a,#0

It i a=0

Then P'APhas the required form.

4.16: Hermitian Forms
Let V be a vector space of finite dimension over the complex field C. Let

f:VxV — C be such that
1) flau, +bu,,v)=af (u,,v)+bf (u,,v)
11) flu,v)= fv,u)
where a,be C and u,,ve V. The fis called Hermitian form on V.

By (1) and (i1), we have

f(u,av1 +bv2)=f(av1 +bv2,u)=af(vl,u)+bf(v2,u)
=a fvulb flvy,u)=a fluv b fluv,)
ie., (iil) f(u,av, +bv,)=a f(u,v,)+b f(u,v,)

Note that f(u,v)= f(v.u) and so f(v,v) is real for any ve V.
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Exercise: Let A be a Hermitian matrix, Show that f is a Hermitian form on
C"; where f is defined by f(X.,Y)=X'AY .
Solution: For all ¢,be C and X,,X,,Ye C"

FlaX, +bX,.Y)=(aX, +bX,) AY = (aX ' +bX, AV

Hence f is linear in the first variable. Also

FX.Y)=X'AY =(X'AY) =Y’ AY =Y'A'X =Y'AX = f(¥,X)

Hence f is Hermitian form on C".
Exercise: Let f be a Hermitian form on V and H is the matrix of f in a basis

{e,.e,,---,e Jof V. Show that

1) flu,v)=[ul H[v], for all u,veVv
ii)  If P is the transition matrix from {e,} to a new basis {¢/} of V, then
B=P'HP (or B=Q "HQ, where Q=P) is the matrix of f in the new
basis {e/}.
Proof: i) Let u,veV and suppose
u=ae +aye, +--+ae and v=be +bye, +--+b e,

Then f(u.v)= f(ae, +ae, +---+ase,, be +be, +---+be,)

SRS

Zaigjf(enej):(al’az""’an)H :[M]LH[VL

iii)  Since P is a transition matrix from {e.} to {¢/},

then Plu], =[u],, P[v], =[v], and so,
[u], = Plul, P", []=PDL

Thus by (), f(uv)=[ul #E], =[] PP,
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But u and v are arbitrary elements of V, hence P'HP is the matrix of f
in the basis {¢/}
Remark: The mapping ¢:V — Rdefined by ¢(v)= f(v,v)is called Hermitian
quadratic form or complex quadratic form associated with the Hermitian

form f. We can obtain f from q according to the following identity called the

polar form of f.
£l =+ )= gl =)} +-lglu+iv) - glu= )}

Now suppose {e,,e,,-,e,} is a basis of V, the matrix H =(s,), where

h, = fle,e;) is called the matrix representation of f in the basis {e,}. Since

f (ei,e ; ): f@i ); hence H is Hermitian and, in particular the diagonal
entries of H are real.
Example: Let f be the dot product on C”, that is

fluv)=uv=zw +z,w, +---+zw, where u=(z) and v=(w).
Then f is a Hermitian form on C". Moreover, f is positive definite since, for
any v#0

2>0

_ _ B 5 R
f(M,V)=Z1Z1+Z2Z2+-.-+ann:|Z1| +|Z2| + .04 Zn
Exercise: Let H be a Hermitian matrix given below. Find the non-singular

matrix P such that P'HP is diagonal.

1 1+i 2i
H=|1-i 4 2-3i
-2i 2+43i 7

Solution: First form the block matrix (H,1):

We have
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1 1+i 2 100
(H,I)=|1-i 4 2-3i 01 0
2 243i 7 00 1

Applying row operations R, —(~1+i)R, +R, and R, — 2iR, +R, to (H,I), and
then the corresponding Hermitian column operations C, — (—1-i)C, +C, and

C, - =2iC, + C, to H, to obtain

1 1+i 2 1 00 1 0 0o : 1 00
0 2 -5 : —14+4i 1 O|landthen|0 2 -5/ ! —1+i 1 0
0 5i 3 2i 0 1 0 5 3 : 2i 0 1

We next apply the operations R, — —5iR, +2R, and then the corresponding

operation C, — 5iC, +2C, to obtain,

1 0 0 : 1 0O O 1 0 0 1 0O O
0 2 -5 —14+4i 1 oO|landthen|O0 2 0 : —14i 1 0
0 0 —-19 : 549 -5 2 0 0 -38 : 549 -5 2

Now H has been diagonalized, We set

1 —1+i 5+9 1 0 0
P=|0 1 —5i | and then P'AP=|0 2 0
0 O 2 0 0 -38

Observe that signature S of H is
S=2-1=1

Theorem: Let f be a Hermitian form on V. Then there exists {e,,e,,---,e, } of
V in which f is represented by a diagonal matrix, i.e., fle, e j):O for i=j.
Moreover, every diagonal representation of f has the same number P of
positive entries, and the same number N of negative entries. The difference
S = P-N is called the signature of f. Analogously f is non-negative semi-
definite if ¢(v)= f(v,v)>0 for every veV and if ¢(v)= f(v.v)>0 for every

v# 0, then f is positive definite.
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Proof: Let f be a Hermitian form on V. Then there exists a basis {e,.e,, ¢, }
of V in which f is represented by a diagonal matrix, i.e., f(e, e j): 0 for i=#j.

Moreover, every diagonal representation of f has the same number P of
positive entries, and the same number N of negative entries.

Note that the second part of the theorem does not hold for complex
symmetric bilinear forms (as seen by part (ii) in exercise before Hermitian
forms). However the proof of the previous theorem (Real symmetric bilinear
form) does carry over the Hermitian cases.

Exercise: Show that any bilinear form f on V is the sum of a symmetric

bilinear form and a skew-symmetric bilinear form.

Solution: Set g(u,v)zé{f(u,v)+ f(v,u)} and h(u,v)zé{f(u,v)—f(v,u)}

Clearly,

8(e) = ) £} = )+ £ v} = gloun)
= g is symmetric, and

hla.v) = ()= == )= £ )} = =)
= h is skew-symmetric.
Furthermore

f=g+h
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