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4.1: Introduction 

  In linear algebra, Jordan normal form (often called Jordan canonical form) 

of a linear operator on a finite dimensional vector space is an upper 

triangular matrix of a particular form called Jordan matrix, representing the 

operator on some basis. The form is characterized by the condition that any 

non-diagonal entries that are non-zero must be equal to 1, be immediately 

above the main diagonal (on the super-diagonal), and have identical diagonal 

entries to the left and below them. If the vector space is over a field K, then a 

basis on which the matrix has the required form exists if and only if all 

eigenvalues of M lie in K, or equivalently if the characteristic polynomial of 

the operator splits into linear factors over K. This condition is always 

satisfied if K is the field of complex numbers. The diagonal entries of the 

normal form are the eigenvalues of the operator, with the number of times 

each one occurs being given by its algebraic multiplicity. 

    If the operator is originally given by a square matrix M, then its Jordan 

normal form is also called the Jordan normal form of M. Any square matrix 

has a Jordan normal form if the field of coefficients is extended to one 

containing all the eigenvalues of the matrix. In spite of its name, the normal 

form for a given M is not entirely unique, as it is a block diagonal matrix 

formed of Jordan blocks, the order of which is not fixed; it is conventional to 

group blocks for the same eigenvalue together, but no ordering is imposed 

among the eigenvalues, nor among the blocks for a given eigenvalue, 

although the latter could for instance be ordered by weakly decreasing size. 

The Jordan–Chevalley decomposition is particularly simple on a basis on 

which the operator takes its Jordan normal form. The diagonal form for 

diagonalizable matrices, for instance normal matrices, is a special case of the 
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Jordan normal form.  The Jordan normal form is named after Camille 

Jordan. This chapter contains the results related to triangular form, Jordan 

canonical form, bilinear form, quadratic forms etc for the graduate students 

in Mathematics. 

4.2: Similarity of Matrices 

 Definition:  Let A and B are two square matrices. Then the matrix B is said 

similar to A if there exists an invertible matrix P such that 

    BAPP =−1  

Theorem :  Similarity of matrices is an equivalence relation 

Similarity of Linear transformation 

Definition : Let V be an n-dimensional vector space over a field F. Let A(V) 

be the set of all linear transformations from V to V. Then two linear 

transformations ( )VATS ∈,  are said to be similar if there exists an invertible 

linear transformation ( )VAC ∈  such that 

TSCC =−1  

 The relation on A(V) defined by similarity is an equivalence relation, thus, 

A(V) decomposes into equivalence classes, each is called similarity class. 

The existence of linear transformation in each similarity class whose matrix 

representation in some bases of V is of special form, such matrices are 

known as Canonical forms. 

   Now in order to check the two linear transformations are similar, we have 

to compute a particular canonical form for each and check if these are the 

same. 

  There are many canonical forms, but we shall discuss the following forms: 

(i) Triangular form 

(ii) Jordan form 
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(iii) Rational Canonical form 

Theorem : VUT →:  be a linear transformation and rank T is equal to r, then 

there exist bases of U and that of V such that the matrix representation of T 

has the form 









=

OO

OI
A  

where I is the r-square identity matrix. 

[The matrix A is known as normal or canonical form] 

Proof: Let the dim U = m and dim V = n. Let W be the kernel of T and  

Im (T) the image of T. 

     Since the rank of T is r, therefore the dimension of the kernel space of T 

is m-r. Let { }rm−ααα ,,, 21 L  be a basis of W. So it can be extended to form a 

basis of U. Let this extension be  

  { }rmnvvv −ααα ,,,,,,, 2121 LL  

Now setting ( ) ( ) ( )rr vTuvTuvTu === ,,, 2211 L  

Observe that  

  ( ) nrr uuuuuuvT .0.0.0.0.1 12111 ++++++== + LL  

  ( ) nrr uuuuuuvT .0.0.0.1.0 12122 ++++++== + LL  

  ( ) nrr uuuuuuuvT .0.0.0.1.0.0 132133 +++++++== + LL  

  LLLLLLLLLLL  

  ( ) nrrrr uuuuuuvT .0.0.1.0.0 121 ++++++== + LL  

  ( ) nrr uuuuuT .0.0.0.0.00 1211 ++++++== + LLα  

  ( ) nrr uuuuuT .0.0.0.0.00 1212 ++++++== + LLα  

  LLLLLLLLLLL  

  ( ) nrrrm uuuuuT .0.0.0.0.00 121 ++++++== +− LLα  

Thus the matrix representation of T is  
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nn

A

×




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























=

0000000

0000000

0001000

000010

000001

L

MMMMLMMM

L

L

LLLLLLLL

LL

LL

 

or  







=

OO

OI
A  

 

4.3. Canonical Forms 

 Let T be a linear operator on a finite dimensional vector space, we know 

that T may not have a diagonal matrix representation ¥. The canonical form 

aims to simplify the matrix representation of T by means of primary 

decomposition theorem, Triangular, Jordan and rational canonical forms. 

 We note that that triangular and Jordan canonical forms exist for T if and 

only if the characteristic polynomial ( )λ∆  of T has all its roots in the base 

field K. this is always true if K is the complex field C  but may not be true if 

K is the real field R . 

------------------------------------------------------------------------------------ 

¥:  The matrix 







=

10

11
A  is not diagonalizable, since the characteristic 

polynomial of A is  ( ) ( )2
1−=∆ λλ ; hence 1 is the only eigen-value of A. We 

find a basis of the eigen-space of the eigen-value 1. Substitute 1=λ  into the 

matrix AI −λ   to obtain 


















y

x

10

11
  or  





=

=−

00

0y
or 0=y  
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The system has only one independent solution, e.g., 0,1 == yx . Hence 

( )0,1=u  forms a basis of the eigen-space of A. Since A has at most one 

independent eigen-value, A can not be diagonalizable. 

--------------------------------------------------------------------------------- 

4.4: Invariance 

  Let VVT →: be linear. A subspace W of a V is said to be invariant if T 

maps W into itself, i.e., if Wv ∈  implies ( ) WvT ∈ . In this case T restricted to 

W defines a linear operator on W; that is, T induces a linear operator 

WWT →:ˆ  defined by ( ) ( )wTwT =ˆ  for every Ww ∈ . 

 

Invariant Subspaces 

 Definition: Let VVT →:  be a linear transformation. Then a subspace W of 

V is invariant under T if ( ) VWT ⊂ i.e., if W∈α , then ( ) WT ∈α . 

Example 1: Let  33: RRT →  be the linear operator which rotates each vector 

about the z-axis by an angle θ : 

   ( ) ( )zyxyxzyxT ,cossin,sincos,, θθθθ +−=  

Observe that each vector ( )0,,baw =  in the xy plane W remains in W under 

the mapping T, i.e., W is T-invariant. Observe also that the Z-axis U is 

invariant under T. Furthermore, the restriction of T to W rotates each vector 

about the origin O, and the restriction of T to U is the identity mapping of U. 
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Example 2: Non-zero eigen vectors of a linear operator VVT →:  may be 

characterized as generators of T-invariant 1-dimensional subspaces. For 

suppose ( ) vvT λ= , 0≠v , then { }KkukW ∈= ; , the 1-dimensional subspace 

generated by v, is invariant under T because 

  ( ) ( ) ( ) WvkvkvkTkvT ∈=== λλ  

Conversely, suppose that dim V = 1 and 0≠u  generates U, and U is 

invariant under T. Then ( ) UuT ∈  and so ( )uT  is a multiple of u, i.e., 

( ) uuT µ= , Hence u  is an eigen vector of T. 

 

Exercise 1: Suppose VVT →:  is a linear operator, show that each of the 

following is invariant under T. 

(i) {0}  (ii) V              (iii) Kernel of T       (iv) Image of T

Sol.: We have VVT →:  a linear map. 

       (i)    Clearly  ( ) { }000 ∈=T  

   Hence { }0  is invariant under T. 

       (ii)   For every Vv ∈ ,  ( ) VvT ∈ , 

   Hence V is invariant under T. 

(iii) Let Tu ker∈ , then ( ) TuT ker0 ∈= . Since the Tker  is a subspace of 

V. Thus Tker  is invariant under T. 

(iv) Since ( ) ( )TvT Im∈ , for every Vv ∈ , it is certainly true if ( )Tv Im∈ . 

Hence the ( )TIm is invariant under T. 

 

Exercise 2: Suppose { }iW  is a collection of T-invariant subspaces of a vector 

space V. Show that the intersection I iWW =  is also T-invariant. 

Sol.: Suppose Wv ∈ ; then 
i

Wv ∈  for every i . Since 
i

W  is T-invariant, 

( )
i

WvT ∈  for every i . Thus ( ) I iWWvT =∈ , so W  is T-invariant. 
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Theorem 2: Let VVT →:  be any linear operator and let ( )tf  be any 

polynomial. Then the kernel of ( )Tf  is invariant under T. 

Proof: We have given that ( )tf  is a polynomial and VVT →:  is a linear 

map. 

Now    ( ) ( )( )( ){ }0:ker =∈= uTfVuTf  

Now suppose   ( )Tfv ker∈  

i.e.,    ( )( ) 0=vTf  

we need to show that ( )vT  also belongs to the kernel of ( )Tf  

i.e.,    ( ) ( )( ) 0=vTTf  

since    ( ) ( )ttfttf =  

we have  ( ) ( )TTfTTf =  

Thus,    ( ) ( ) ( )( ) ( ) 00 === TvTTfvTTf  

 

Exercise 3: Find all invariant subspaces of 








−

−
=

21

52
A  viewed as an 

operator on 2
R . 

Sol.: First of all, we have that 2
R  and { }0  are invariant under A. Now if A has 

any other invariant subspaces, then it must be 1-dimensional. However the 

characteristic polynomial of A is  

         ( ) 1
21

52
2 +=

+−

−
=−=∆ λ

λ

λ
λλ IA  

Hence A has no eigen values (in 2
R ) and so A has no eigen vectors. But the 

1-dimensional invariant subspaces correspond to the eigen vectors; Thus 2
R  

and { }0  are the only subspaces invariant under A. 

Theorem: If W is a subspace invariant under ( )VAT ∈ , then T induces a 

linear transformation T  on WV /  defined by ( ) ( ) WTWT +=+ αα . Moreover 
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if T satisfies the polynomial ( ) [ ],xFxq ∈ then so is T . Thus the minimal 

polynomial of T  divides the minimal polynomial of T. 

Proof:  First we show that T  is well defined. Let W+α  and W+β  be any 

element of V/W. 

   If WW +=+ βα , then W∈− βα . Since W is T-invariant, then 

   ( ) ( ) ( ) WTTT ∈−=− βαβα  

So, accordingly, ( ) ( ) WTWT +=+ βα  

⇒    ( ) ( )WTWT +=+ βα  

Thus  T  is well defined. 

We now show that T  is linear. For which, 

  ( ) ( ){ } ( )WTWWT ++=+++ βαβα  

     ( ) WT ++= βα  

     ( ) ( ) WTWT +++= βα  

     ( ) ( )WTWT +++= βα  

Also  ( ){ } ( )WcTWcT +=+ αα  

            ( ) WcT += α  

            ( ) WcT += α  

            ( )( )WTc += α    

            ( )WTc += α  

Thus, T is linear. 

If WVW /∈+α , 

Then   ( ) ( ) ( )( ) WTTWTWT +=+=+ ααα 22  

         ( )( ) ( )( )WTTWTT +=+= αα  

         ( )WT += α2   

Therefore, ( ) ( )22 TT =  
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Thus, we can easily show that 

  ( ) ( )nn TT =  for any 0≥n . 

Now for any polynomial ( ) [ ],xFxq ∈ given by  

  ( ) 0

1

1 axaxaxq n

n

n

n
+++= −

− L  

( )( ) ( )( ) ( ) ( ) ( ) WIaTaTaWTqWTq n

n

n

n
++++=+=+ −

− ααααα 0

1

1 L  

                                  ( ) ( )( )∑∑ +=+= WTaWTa i

i

i

i αα  

            ( ) ( ) ( )WTaWTa
i

i

i

i +=+= ∑∑ αα  

            ( )( )WTq += α
_____

 

Therefore,  ( ) ( )
_____

TqTq = . Accordingly if T is a root of ( ) 0=xq , then 

( ) ( )TqWTq === 0
_____

. Thus T  is also a root of ( ) 0=xq . 

Let ( )xp1  be the minimal polynomial over F satisfied by T . 

If ( ) 0=Tq  for ( ) [ ],xFxq ∈  then ( ) ( )xqxp |1 . If ( )xp  be the minimal polynomial 

of T over F, then ( ) 0=Tp  implies ( ) 0=Tp . Hence ( ) ( )xpxp |1 . 

 

4.5: Triangular Forms 

Definition:  If VVT →:  is a linear transformation of V over F, then the 

matrix of T in the basis { }nααα ,,, 21 L  of V is triangular if  

  ( ) 1111 αα aT =  

  ( ) 2221212 ααα aaT +=  

  ( ) 3332321313 αααα aaaT ++=  

  ………………………………… 

  ( ) nnnnnn aaaT αααα +++= L2211    

In other words, Let T be a linear operator on an n-dimensional vector space 

V. suppose T can be represented by the triangular matrix 
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



















=

nn

n

n

a

aa

aaa

A
LL

L

L

222

11211

 

Then the characteristic polynomial of T  

  ( ) ( )( ) ( )nnaaaIA −−−=−=∆ λλλλλ L2211  

is a product of linear factors and conversely. 

 

Theorem: If ( )VAT ∈  has all its characteristic roots in F, then there is a basis 

of V in which the matrix of T is triangular. 

Proof: We prove the theorem by induction on the dimension of V. If dim V 

=1, then every matrix representation of T is a matrix of order 1 x 1, which is 

trivially triangular. 

Now suppose that the theorem is true for all vector spaces over F of 

dimension n -1. Let dim V = n >1. Since T has all its characteristic roots of 

F. Let F∈1λ be a characteristic root of T. Then there exists a non-zero eigen 

vector 1α  corresponding to 1λ  such that ( ) 1111 αα aT = . Let W be the one 

dimensional subspace of V spanned by 1α , and is T-invariant. Set WVV /= , 

then 

  1dimdimdim −=−= nWVV  

Thus by the above theorem T induces a linear transformation T on V  whose 

minimal polynomial divides the minimal polynomial of T. Therefore, all the 

roots of the minimal polynomial of T , being roots of the minimal 

polynomial of T must lie in F. Thus V  and T  satisfy the hypothesis of the 

theorem. 

 Since 1dim −= nV , therefore by induction hypothesis, there is a basis 

{ }
n

ααα ,,, 21 L  of V  such that 
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( ) 2222 αα aT =  

  ( ) 3332323 ααα aaT +=  

  ………………………………… 

  ( )
nnnnnn

aaaT αααα +++= L3322  

Now let { }
n

ααα ,,, 21 L  be the elements of V which belong to the cosets 

n
ααα ,,, 21 L  respectively i.e., W

ii
+= αα . Then { }

n
ααα ,,, 21 L  is a basis of V. 

Since   ( ) 2222 αα aT =  

⇒   ( ) ( )WaWT +=+ 2222 αα  

⇒   ( ) ( ) WaWT +=+ 2222 αα  

⇒   ( ) ( ) WaT ∈− 2222 αα  

But W is spanned by 1α , so  

  ( ) ( ) 1212222 ααα aaT =−  

⇒   ( ) ( )2221212 ααα aaT +=  

Similarly for 
n

ααα ,,, 43 L , we have 

  ( )
niniii

aaaT αααα +++= L2211  

Thus, we have 

  ( ) 1111 αα aT =  

  ( ) 2221212 ααα aaT +=  

  ( ) 3332321313 αααα aaaT ++=  

  ………………………………… 

  ( )
nnnnnn

aaaT αααα +++= L2211   

Hence the matrix of T in the basis { }
n

ααα ,,, 21 L is triangular. 

Alternative form of the above theorem: If a square matrix A has all its 

characteristic roots in F, then A is similar to a triangular matrix i.e., there 

exists an invertible matrix P such that APP
1−  is triangular. 
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Remark: Let T be the representation of triangular matrix 

  





















=

nn

n

in

a

aa

aaa

A

L

LLLL

L

L

00

0 222

1211

 

Then the characteristic polynomial of T is given by 

  ( ) ( )( ) ( )
nn

axaxaxAxIx −−−=−=∆ L2211||  

which is a product of linear factors. 

Theorem: If dim V = n and if ( )VAT ∈  has all its roots in F, then T satisfies 

a polynomial of degree n and 
n

λλλ ,,, 21 L  be the characteristic roots of F. 

Proof: Since T has all its roots in F so there is a basis { }
n

ααα ,,, 21 L  of V 

such that 

( ) 111 αλα =T  

  ( ) 221212 αλαα += aT  

  ( ) 332321313 αλααα ++= aaT  

  ………………………………… 

  ( )
nnnnn

aaT αλααα +++= L2211  

Above equations are equivalent to  

  ( )( ) 011 =− αλ IT  

  ( )( ) 12122 ααλ aIT =−  

  ( )( ) 23213133 αααλ aaIT +=−  

………………………………… 

  ( )( ) ( ) 112211 −−+++=− nnnnnnn aaaIT ααααλ L  

Now   ( )( )( ) ( )( )( )221112 αλλαλλ ITITITIT −−=−−  

      ( )( ) ( )( )[ ]ITITITIT 2112 λλλλ −−=−−Q  

   = ( )( )1212 αλ aIT −  
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   = ( )( ) 01121 =− αλ ITa  

and  ( )( )( )( ) ( )( )( )( )33123123 αλλλαλλλ ITITITITITIT −−−=−−−  

   ( )( )( )23213112 ααλλ aaITIT +−−=  

   ( )( )( ) ( )( )( )2321213112 αλλαλλ aITITaITIT −−+−−=  

   ( )( )( ) ( )( )( )2123211231 αλλαλλ ITITaITITa −−+−−=  

   000 =+=  

Continuing in this way, we get 

( )( )( ) ( )( ) 0121 =−−−− −− nnnn
ITITITIT αλλλλ L  

Let  ( )( )( ) ( )ITITITITS
nnn 121 λλλλ −−−−= −− L , it satisfies ( ) 01 =αS , ( ) 02 =αS , . 

. ., ( ) 0=
n

S α . 

Thus annihilates a basis of V, thus S annihilates all of V. Therefore S = 0 

which implies that 

  ( )( )( ) ( ) 0121 =−−−− −− ITITITIT
nnn

λλλλ L  

Hence T satisfies a polynomial  

  ( ) ( )( )( ) ( )121 λλλλ −−−−= −− xxxxxq
nnn

L  in [ ]xF  of degree n. 

Theorem 1: Let VVT →:  be a linear operator whose characteristic 

polynomial factors into linear polynomials. Then there exists a basis of V in 

which T is represented by a triangular matrix. 

Alternative form: Let A be a square matrix whose characteristic polynomial 

factors into linear polynomials. Then A is similar to a triangular matrix, i.e., 

there exists an invertible matrix P such that APP
1−  is triangular. 

Example 1: Let A be a square matrix over the complex field C. Suppose λ  

is an eigen value of 2
A , Show that λ  or λ−  is an eigen-value of A. 

 We know by the above theorem that 
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



















=

n

B

µ

µ

µ

LL

L

L

*

**

2

1

 

Hence 2
A  is similar to the matrix 





















=

2

2

2

2

1

2 *

**

n

B

µ

µ

µ

LL

L

L

 

Since similar matrices have the same eigen-values, 2

i
µλ =  for some i . Hence 

λµ ±=
i

, i.e., λ  or λ−  is an eigen-value of A. 

Theorem 3: Suppose W is invariant subspaces of VVT →: . Then T has a 

block diagonal matrix representation 








C

BA

0
, where A is a matrix 

representation of the restriction T̂  of T  to W. 

Proof:  We choose a basis { }
r

www ,,, 21 L  and extend it to a basis 

{ }
sr

vvvwww ,,,,,,, 2121 LL  of V . 

We have  

 ( ) ( )
rr

wawawawTwT 121211111
ˆ +++== L  

 ( ) ( )
rr

wawawawTwT 222212122
ˆ +++== L  

 ……………………………………………. 

              ( )
ssrr

vcvcwbwbwbvT 111112121111 ++++++= LL  

 ( )
ssrr

vcvcwbwbwbvT 212122221212 ++++++= LL  

 ……………………………………………………… 

 ( )
ssssrsrsss

vcvcwbwbwbvT ++++++= LL 112211  
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But the matrix of T in this basis is the transpose of the matrix of coefficients 

of the above system of equations. Therefore, it has the form 








C

BA

0
, where 

A is the transpose of the matrix of coefficients for the obvious subsystem. 

By the same argument A is the matrix of  T̂  relative to the basis { }
i

w  of W. 

Exercise 4: Let T̂  denote the restriction of an operator T  to an invariant 

subspace W, i.e., ( ) ( )WTWT =ˆ  for every Ww∈ . Prove that 

(i) For any polynomial ( )tf , ( )( ) ( )( )wTfwTf =ˆ  

(ii) The minimal polynomial of T̂  divides the minimum polynomial 

ofT . 

Sol.: (i) If ( ) 0=tf  or ( )tf  is constant, i.e., of degree one, then the result 

clearly holds. Assume 1deg >= nf  and the result holds for polynomials of 

degree less than n. Suppose that 

   ( ) 01

1

1 atatatatf n

n

n

n
++++= −

− L  

Then  

   ( )( ) ( )( )wIaTaTaTawTf n

n

n

n 01

1

1
ˆˆˆˆ ++++= −

− L  

       ( ) ( )( ) ( )( )wIaTaTawTTa n

n

n

n 01

1

1

1 ˆˆˆˆ ++++= −

−

−
L  

      ( ) ( )( ) ( )( )wIaTaTawTTa n

n

n

n 01

1

1

1 ++++= −

−

−
L  

      ( )( )wTf=  

(ii) Let ( )tm  denote the minimum polynomial ofT . Then by (i)  

                                   ( )( ) ( )( ) ( ) 00ˆ === wwTmwTm  for every Ww∈ . 

i.e., T̂  is a zero of the polynomial ( )tm . Hence the minimum polynomial of T̂  

divides ( )tm . 
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4.6: Invariant Direct Sum Decomposition 

A vector space V is termed as the direct sum of its subspaces 
r

WWW ,,, 21 L  

written as  

r
WWWV ⊕⊕⊕= L21   

If for every Vv ∈  can be written uniquely in the form 

r
wwwv +++= L21  with 

ii
Ww ∈ . 

Theorem: If 
r

WWWV ⊕⊕⊕= L21  where each subspace 
i

W  is of dimensions 

i
n  and is invariant under ( )VAT ∈ , then a basis of V can be found so that the 

matrix of T in this basis is of the form 





















r
A

A

A

000

00

00

2

1

LLLL

L

L

 

where each 
i

A  is an 
ii

nn ×  matrix and is the matrix of the linear 

transformation induced by T on 
r

W . 

Proof:  Let ( ) ( ) ( ){ }1

1

1

2

1

1 ,,,
n

ααα L , ( ) ( ) ( ){ }2

2

2

2

2

1 ,,,
n

ααα L , . . . , ( ) ( ) ( ){ }r

nr

rr
ααα ,,, 21 L  

be the basis of 
r

WWW ,,, 21 L  respectively. 

Since 
r

WWWV ⊕⊕⊕= L21 , therefore 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }r

nr

rr

nn
ααααααααα ,,,,,,,,,,, 21

2

2

2

2

2

1

1

1

1

2

1

1 LLL  

form a basis of V. Also each 
i

W is T-invariant, so that ( )( ) i

i

j WT ∈α  and it is 

linear combination of ( ) ( ) ( ){ }i

ni

ii
ααα ,,, 21 L , and of only these, that is, 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )i

ni

i

ni

iiiii

j aaaT αααα +++= L2211    …(1) 

for ,,,2,1,,,2,1 21 njnj LL ==  so on and ri ,,2,1 L=  

Thus the matrix representation of T in a basis of V is obtained by (1) which 

is  



Canonical forms                                                                                      Khanday M A 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KASHMIR SRINAGAR-190006 18 





















rA

A

A

000

00

00

2

1

LLLL

L

L

 

where iA  is the matrix of iT  induced on iW  by T. 

 

Home Assignments 

1. Suppose W is invariant under VVS →:  and VVT →: . Show that W is 

also invariant under S + T and ST. 

2. Suppose VVT →:  is linear and 21 TTT ⊕= , with respect to a T-

invariant direct sum decomposition 21 VVV ⊕= . Show that  

(i) ( )xm  is the least common multiple of ( )xm1  and ( )xm2 , where 

( )xm , ( )xm1  and ( )xm2  are minimal polynomials of 1, TT  and 

2T  respectively. 

(ii) ( ) ( ) ( )xxx 21 ∆∆=∆ , where ( ) ( )xx 1, ∆∆  and ( )x2∆  are the 

characteristic polynomials of 1, TT  and 2T  respectively. 

3. Let VVT →: be linear and let W be the eigenspace belonging to an 

eigenvalue λ  of T. Show that W is T-invariant. 

4. Prove that similar matrices have the same eigenvalues. 

Theorem 4: Suppose rWWW ,,, 21 L  are subspaces of V, and let 

{ }111211 ,,, nwww L ,  .   .  . , { }121 ,,, rnrr www L  are bases of rWWW ,,, 21 L  

respectively, then V is the direct sum of the riWi ,,2,1; L=  if and only if the 

union { }rnrrrn wwwwwwB ,,,,,,,, 21111211 LLL=  is a basis of V. 

Proof: Suppose { }rnrrrn wwwwwwB ,,,,,,,, 21111211 LLL=  is a basis of V, then for 

every Vv ∈ . 

 rnrrnrrrrrnn wawawawawawav ++++++++= LLL 2211111112121111                      
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               rwww +++= L21  

where iiniiniiiiii Wwawawaw ∈+++= L2211 . 

We next show that such a sum is unique. 

Suppose rwwwv ′++′+′= L21  where ii Ww ′∈′  

Since { }iniii www ,,, 21 L  is a basis of iW ,  

we have   iniiniiiiii wbwbwbw +++=′ L2211   

and so                           rnrrnrrrnn wbwbwbwbwbv +++++++= LLL 11111112121111  

Since B  is a basis of V, ijij ba =  for each i  and each j . Hence ii ww ′=  and so 

the sum of v  is unique. Accordingly V is the direct sum of iW . 

Conversely, suppose V is the direct sum of iW . Then for any Vv ∈ , 

rwwwv +++= L21  where ii Ww ∈ . Since { }ijiw  is a basis of iW , each iw  is a 

linear combination of the elements ijiw  and so v  is the linear combination of 

the elements of B. Thus B spans V. We now show that the elements in B are 

linearly independent. 

Suppose 02211111112121111 =++++++++ rnrrnrrrrrnn wawawawawawa LLL  

Note that iiniiniiiii Wwawawa ∈+++ L2211 , we also have 0000 +++= L , where 

iW∈0 . Since such a sum for 0  is unique. 

Therefore, 02211 =+++ iniiniiiii wawawa L   for ri ,,2,1 L=  

The independence of the basis { }ijiw  imply that all sa'  are zero. Thus B  is 

linearly independent and hence is a basis of V . 

Remark 1:  Suppose that VVT →:  is linear and V is the direct sum of (non-

zero) T-invariant subspaces rWWW ,,, 21 L : 

  rWWWV ⊕⊕⊕= L21  and ( ) riWWT ii ,...,2,1; =⊂  
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Let iT  denote the restriction of T to iW . Then T is said to be decomposed 

into the operators iT  or T is said to be direct sum of the iT , written 

rTTTT ⊕⊕⊕= L21 . Also the subspaces rWWW ,,, 21 L  are said to reduce T or 

to form a T-invariant direct sum decomposition of V. 

Remark 2:  Consider the special case where two subspaces U and W reduce 

an operator VVT →: ; say dim U = 2 and dim W = 3 and suppose { }21 ,uu  and 

{ }321 ,, vvv are basis of U and W respectively. If 1T  and 2T  denote respectively 

the restrictions of T to U and W, then 

( ) 21211111 uauauT +=  

( ) 22212121 uauauT +=  

( ) 31321211112 wbwbwbwT ++=  

( ) 32322212122 wbwbwbwT ++=  

( ) 33323213132 wbwbwbwT ++=  

Hence  

  







=

2221

1211

aa

aa
A   and 

















=

333231

232221

131211

bbb

bbb

bbb

B  

are matrix representations of 1T  and 2T  respectively.  By the above theorem 

{ }32121 ,,,, vvvuu  is a basis of V. Since ( ) ( )ii uTuT 1=  and ( ) ( )jj WTwT 2= . The 

matrix in the basis is the block diagonal matrix  








B

A

0

0
. 

Remark 3:  Suppose VVT →:  is linear and V is the direct sum of T-

invariant subspaces rWWW ,,, 21 L . If iA is the matrix representation of the 

restrictions of T to iW , then T can be represented by the block diagonal 

matrix 



Canonical forms                                                                                      Khanday M A 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KASHMIR SRINAGAR-190006 21 





















=

rA

A

A

M

000

00

00

2

1

LLLL

L

L

 

The block diagonal matrix M with diagonal entries rAAA ,,, 21 L is sometimes 

called the direct sum of the matrices rAAA ,,, 21 L  and is denoted by 

rAAAM ⊕⊕⊕= L21 .  

Theorem 7: Suppose VVT →:  is linear and for ( ) ( ) ( )thtgtf =  are 

polynomials such that ( ) 0=Tf  and ( )tg  and ( )th  are relatively prime. Then V 

is the direct sum of the T-invariant subspaces U and W, where ( )TgU ker=  

and ( )ThW ker= . 

Proof:  Note first that U and W are T-invariants. Now, since ( )tg  and ( )th  

are relatively prime, there exists polynomials ( )tr  and ( )ts  such that 

  ( ) ( ) ( ) ( ) 1=+ thtstgtr  

Hence for the operator T, 

  ( ) ( ) ( ) ( ) IThTsTgTr =+       …(1) 

Let Vv ∈ , then by (1), we have 

  ( ) ( ) ( ) ( ) vvThTsvTgTr =+  

But the first term in this sum belongs to ( )ThW ker= . Since 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )vTfTrvThTgTrvTgTrTh ==   

     ( ) 00. == Tr  

Similarly, the second term in this sum belongs to ( )TgU ker= . 

Hence, V is the direct sum of U and W. 

 To prove WUV ⊕= , we must show that the representation wuv +=  is 

unique for uv,  and w  respectively, the elements of V, U and W. 

Applying the operator ( ) ( )TgTr  to vuv +=  using ( ) ,0=uTg  we obtain  
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  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )wTgTrwTgTruTgTrvTgTr =+=  

Again applying (1) to w  alone and using ( ) 0=wTh , we obtain 

  ( ) ( ) ( ) ( ) ( ) ( )wTgTrwThTswTgTrw =+=  

Both of the above formulae gives us ( ) ( )vTgTrw =  and w  is uniquely 

determined by v . Similarly u  is uniquely determined by v . Hence 

WUV ⊕= , as required. 

Corollary: If f(t) is the minimal polynomial of T [ g(t) and h(t) are monic], 

then g(t) and h(t) are the minimal polynomials of the restrictions of T to U 

and W respectively. 

 

4.7: Primary Decomposition Theorem 

Statement: Let VVT →:  be a linear operator with minimal polynomial  

  ( ) ( ) ( ) ( ) rn

r

nn
tftftftm L21

21=  

where ( )tfi  are the distinct monic irreducible polynomials. Then V is the 

direct sum of T-invariant subspaces rWWW ,,, 21 L , where iW  is the kernel of 

( ) in

i Tf . Moreover ( ) in

i tf is the minimal polynomial of the restriction of T to 

iW . 

Proof: To prove this result, we use induction on r. 

Clearly for r = 1, the result is trivial.  

Assume that the result is true for all values up to r-1. By using above 

theorem, we can write v as the direct sum of T-invariant subspaces 1W  and 

1V , where 1W  is the kernel of ( ) 1

1

n
Tf  and  1V  is the kernel of ( ) ( ) rn

r

n
TfTf L2

2 . 

Also by using above corollary, the minimal polynomial of the restrictions of 

T to 1W  and 1V  are respectively ( ) 1

1

n
Tf  and ( ) ( ) rn

r

n
TfTf L2

2 . 
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Denote the restrictions of T to 1V  by 1T . By the induction hypothesis 1V  is the 

direct sum of subspaces rWW ,,2 L  such that iW  is the kernel of ( ) in

i Tf  and 

such that ( ) in

i tf is the minimal polynomial for the restriction of T to iW . But 

the kernel of ( ) in

i Tf for ri ,,2,1 L=  is necessarily contained in 1V  since ( ) in

i tf  

divides ( ) ( ) rn

r

n
tftf L2

2 . Thus the kernel of ( ) in

i Tf is the same as the ( ) in

i Tf 1 , 

which is iW . Also the restriction of T to iW  is the same as the restriction of 

1T  to iW ; ri ,,2,1 L= . Hence ( ) in

i tf is also the minimal polynomial for the 

restriction of T to iW , thus rWWWV ⊕⊕⊕= L21  is the desired decomposition 

of T. 

Theorem: A linear operator VVT →:  has a diagonal matrix representation if 

and only if its minimal polynomial m(t) is a product  of distinct linear 

polynomials. 

Proof: Suppose m(t) is a product of distinct linear polynomials, say 

  ( ) ( )( ) ( )rttttm λλλ −−−= L21  

where the  iλ   are distinct scalars. By the primary decomposition theorem, V 

is the direct sum of subspaces rWWW ,,, 21 L  , where ( )ITW ii λ−= ker , thus if 

iWv ∈ , then ( ) 0=− vIT iλ  or ( ) vvT iλ= . In other words, every vector in iW  is 

an eigenvector belonging to the eigenvalue iλ . But we know that the union 

of bases for rWWW ,,, 21 L  is a bases of V. This basis consists of eigenvectors 

and so T is diagonalizable.  

 Conversely, suppose T is diagonalizable, i.e. V has a basis consisting of 

eigenvectors of T. Let sλλλ ,,, 21 L  be the distinct eigenvalues of T, then the 

operator  

( ) ( )( ) ( )ITITITTf sλλλ −−−= L21  

maps each basis vector into zero. 
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Thus f(T) = 0 and hence the minimum polynomial m(t) of T divides the 

polynomial ( ) ( )( ) ( )sttttf λλλ −−−= L21  

Accordingly m(t) is the product of distinct linear polynomials. 

Example: Suppose IA ≠  is a square matrix for which IA =3 . Determine 

whether or not A is similar to a diagonal matrix if A is a matrix over (i) the 

field of reals R, (ii) the complex field C. 

Since IA =3 ,  A is a zero of the polynomial ( ) ( )( )111 23 ++−=−= tttttf  

The minimal polynomial m(t) of A can not be ( )1−t , since IA ≠  

Hence ( ) ( )12 ++= tttm  or ( ) 13 −= ttm  

Since neither polynomial is a product of linear polynomials over R, A is not 

diagonalizable over R. On the other hand each of the polynomial is a product 

of distinct linear polynomials over C. Hence A is diagonalizable over C. 

 

4.8: Nilpotent Operators 

 A linear operator VVT →:  is termed nilpotent if 0=nT , for some positive 

integer n; we call k the index of nilpotency of T if 0=kT  but 01 ≠−kT . 

Analogously, a square matrix A is termed nilpotent if 0=nA  for some 

positive integer n; and of index k if 0=kA  but 01 ≠−kA . 

Clearly, the minimum polynomial of a nilpotent operator (matrix) of index k 

is ( ) kttm = , hence 0 is its only eigenvalue. 

Theorem: Let VVT →:  be linear and for Vv ∈ , ( ) 0=vT k  but ( ) 01 ≠− vT k . 

Prove that: 

a) The set ( ) ( ){ }vTvTvS k 1,,, −= L  is linearly independent. 

b) The subspace W generated by S is T-invariant. 

c) The restriction T̂  of T  to W is nilpotent of index k. 
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d) Relative to the basis ( ) ( ){ }vvTvT k ,,,1
L

−  of W, the matrix of T is of the 

form 























00000

10000

00100

00010

L

L

LLLLLL

L

L

 

Hence the above k-square matrix is nilpotent of index k. 

Proof:   (a) Suppose    ( ) ( ) ( ) 01

1

2

210 =++++ −

− vTavTavTava k

kL       …(1) 

Apply 1−k
T  to (1) and using ( ) 0=vT k , we obtain  ( ) 01 =− vaT k ; since 

( ) 0,01 =≠− avT k . 

Now applying 2−k
T   to (1) and using ( ) 0=vT k  and 0=a , we find ( ) 01

1 =− vTa k ; 

hence 01 =a . 

Next applying 3−k
T   to (1) and using ( ) 0=vT k  and 01 == aa , we find 

( ) 01

2 =− vTa k ; hence 02 =a . 

Continuing this process, we find that all the a’s are 0; hence S is linearly 

independent. 

(b) Let Wv ∈ . Then  ( ) ( ) ( )vTbvTbvTbbvv k

k

1

1

2

21

−

−++++= L  

Using ( ) 0=vT k , we have that 

   ( ) ( ) ( ) ( ) ( ) WvTbvTbvTbvbTvT k

k ∈++++= −

−

1

2

3

2

2

1 L  

Thus W is T- invariant. 

(c) By hypothesis ( ) 0=vT k , hence for 1,,2,1,0 −= ki L  

  ( )( ) ( ) 0ˆ == + vTvTT iki  

i.e., applying k
T̂  to each generator of W, we obtain 0; hence 0ˆ =k

T  and so T̂  

is nilpotent of index at most k. On the other hand  ( ) ( ) 0ˆ 11 == −− vTvT kk . 

Hence T is nilpotent of index k. 
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(d) For the basis ( ) ( ){ }vvTvT k ,,,1
L

−  of W,  

  ( )( ) ( ) 0ˆ 1 ==− vTvTT kk  

  ( )( ) ( )vTvTT kk 12ˆ −− =  

  ( )( ) ( )vTvTT kk 23ˆ −− =  

  …………………………………. 

  ( )( ) ( )vTvTT 2ˆ =  

  ( ) ( )vTvT =ˆ  

Hence the matrix in this basis is  

  























00000

10000

00100

00010

L

L

LLLLLL

L

L

 

Theorem:  Let VVT →:  be linear and iTU ker=  and 1ker += iTW  Show that 

(i) WU ⊂  but ( ) 01 ≠− vT k  (ii) ( ) WWT ⊂ . 

Proof: (i) Suppose iTUu ker=∈ , then ( ) 0=uT i  and so 

( ) ( )( ) ( ) 001 ===+ TuTTuT ii . Thus WTu i =∈ +1ker  

But this is true for every Uu ∈ . Hence WU ⊂  

(ii) Similarly if 1ker +=∈ iTWw  then ( ) 01 =+ wT i  

  Thus ( ) ( )( ) ( ) 001 ===+ iii TwTTwT  

Therefore, ( ) WWT ⊂  

Theorem: Let VVT →:  be a nilpotent operator of index k. Then T has a 

block diagonal matrix representation whose diagonal entries are of the form 
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





















=

00000

10000

00100

00010

L

L

LLLLLL

L

L

N  

There is at least one N of order k and all other N are of order less or equal to 

k. The number of N of each possible order is uniquely determined by T. 

Moreover, the total number of N of all orders is the nullity of T. 

Proof: Suppose dimV = n and TW ker1 = , 2

2 kerTW = , . . . , k

k TW ker= . 

Set ii Wm dim=  for ki ,,2,1 L= . Since T is of index k, VWk =  and VWk ≠−1 , 

and so  nmm kk =<−1 . We know that VWWW k =⊂⊂⊂ ...21 . 

Thus by induction, we can choose a basis { }nuuu ,,, 21 L  of V such that 

{ }
imuuu ,,, 21 L  is a basis of iW . 

We now choose a new basis for V with respect to which T has the desired 

form. It will be convenient to label the members of this new basis by pairs of 

indices. We begin by setting 

( ) ,,1 11 +−
=

kmukv  ( ) 21
,2 +−

=
kmukv , . . . , ( )

kmkk ukmmv =− − ,1 and setting 

( ) ( ),,11,1 kTvkv =−   ( ) ( )kTvkv ,21,2 =− , . . . , ( ) ( )kmmTvkmmv kkkk ,1, 11 −− −=−−  

We also know that  ( ) ( ){ }1,,,1,1,,, 111 2
−−−= −−

kmmvkvuuS kkmk
LL   is linearly 

independent subset of .1−kW  

We extend 1S  to a basis of 1−kW  by adjoining new elements (if necessary) 

which can be done ( ) ( )1,2,1,1 11 −+−−+− −− kmmvkmmv kkkk , . . . , 

( )1,2 −− − kmmv kk  

Next we set   ( ) ( ),1,12,1 −=− kTvkv ( ) ( )1,22,2 −=− kTvkv , . . . , 

( ) ( )1,2, 2121 −−=−− −−−− kmmTvkmmv kkkk  
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Again, we have  ( ) ( ){ }2,,,2,1,,, 2112 3
−−−= −−−

kmmvkvuuS kkmk
LL   is linearly 

independent subset of 2−kW  which we can extend to a basis of 2−kW   by 

adjoining elements  

 ( ),2,121 −+− −− kmmv kk  ( )2,221 −+− −− kmmv kk , . . . , ( )2,32 −− −− kmmv kk  

Continuing in this manner, we get a new basis for V, which for convenient 

reference we arrange as follows 

( ) ( )kmmvkv kk ,,,,1 1−−L  

( ) ( ) ( )1,,,1,,,1,1 211 −−−−− −−− kmmvkmmvkv kkkk LL   

………………………………………………….. 

( ) ( ) ( ) ( )2,,,2,,,2,,,2,1 12211 mmvmmvmmvv kkkk −−− −−− LLL  

( ) ( ) ( ) ( ) ( )1,,,1,,,1,,,1,,,1,1 112211 mvmmvmmvmmvv kkkk LLLL −−− −−−  

The bottom row forms a basis of 1W , the bottom two rows form a basis of 

2W , etc. But what is important for us is that T maps each vector immediately 

below it in the table or into 0 if the vector is in the bottom is in the bottom 

row. That is  

  ( )
( )





=

>−
=

10

11,
,

jfor

jforjiv
jiTv  

Now it is clear from the above theorem-(iv) that T will have the desired form 

if the v(i, j) are ordered lexicographically: beginning with v(1, 1) and 

moving up the first column to v(1, k), then jumping to v(2, 1) and moving up 

the second column as far as possible, etc. 

Moreover, there will be exactly  

1−− kk mm        diagonal entries of order k 

( ) ( ) 21121 2 −−−−− −−=−−− kkkkkkk mmmmmmm  diagonal entries of order k-1 

……………………………………………………………………………. 

           3122 mmm −−                diagonal entries of order 2 
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            212 mm −                    diagonal entries of order 1. 

as can be directly read off from the table. 

In particular since the numbers kmmm ,,, 21 L  are uniquely determined by T. 

Finally the identity  

( ) ( ) ( ) ( )213122111 222 mmmmmmmmmmm kkkkk −+−−++−−+−= −−− L  

shows that the nullity 1m of T is the total number of diagonal entries of T. 

Theorem: Let VVT →:  be linear and 2ker −= iTX , 1ker −= iTY  and iTZ ker= , 

then ZYX ⊂⊂ . Suppose { }ruuu ,,, 21 L , { }sr vvvuuu ,,,,,,, 2121 LL  and 

{ }tsr wwwvvvuuu ,,,,,,,,,,, 212121 LLL  are bases of X, Y and Z respectively. 

Then show that ( ) ( ) ( ){ }tr wTwTwTuuuS ,,,,,,, 2121 LL=  is contained in Yand is 

linearly independent.  

Proof:  From the above theorem, we can easily write ( ) YZT ⊂   and hence 

YS ⊂ . 

Now suppose S is linearly independent, then there exists a relation 

       ( ) ( ) ( ) 022112211 =+++++++ ttrr wTbwTbwTbuauaua LL  

where at least one coefficient is non-zero, Further, since { }iu  is linearly 

independent, at least one of the kb  must be non-zero. Transposing, we find 

( ) ( ) ( ) 2

22112211 ker −=∈−−−−=+++ i

rrtt TXuauauawTbwTbwTb LL  

Hence          ( ) ( ) ( )( ) 02211

2 =+++−

tt

i wTbwTbwTbT L  

Thus,           ( ) 02211

1 =+++−

tt

i wbwbwbT L  and so 

  1

2211 ker −=∈+++ i

tt TYwbwbwb L  

Since { }ji vu ,  generate Y, we obtain a relation among the ji vu ,  and kw  where 

one of the coefficients i.e., kb , is not zero. This contradicts the fact that 

{ }kji wvu ,,  is independent. Hence S must also be linearly independent. 
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4.9: Jordan Canonical Form 

An operator T can be put into Jordan canonical form if its characteristic and 

minimal polynomial factor into linear polynomials. This is always true if K 

is the complex field C. In any case, we can always extend the base field K to 

a field in which the characteristic and minimum polynomial do factor into 

linear factors; thus in a broad sense every operator has a Jordan Canonical 

Form. Analogously, every matrix is similar to a matrix in Jordan Canonical 

form. 

Exercise:        Let 























=

00000

00000

00000

11100

10110

A  , then 























=

00000

00000

00000

00000

11100

2A  and 03 =A  

Hence A is nilpotent of index 2. 

Find the nilpotent matrix M in canonical form which is similar to A. 

Solution: Since A is nilpotent of index 2, M contains a diagonal block of 

index 2 and none greater than 2. Note that rank A = 2; hence nullity of A = 

5-2 = 3. Thus M contains 3 diagonal blocks. Accordingly M must contain 2 

diagonal blocks of order 2 and 1 of order 1; that is 

  





























=

000000

00

00000

01000

00000

00010

M

LLLLM

MM

MM

LLLMLL

M

M

M  

Theorem:  Let VVT →:  be a linear operator whose characteristic and 

minimal polynomials respectively are 
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( ) ( ) ( ) ( ) rn

r

nn
tttt λλλ −−−=∆ L21

21  and ( ) ( ) ( ) ( ) rm

r

mm
ttttm λλλ −−−= L21

21   

where the si 'λ  are distinct scalars. The T has a block diagonal matrix 

representation J whose diagonal entries are of the form 























=

i

i

i

i

ij
J

λ

λ

λ

λ

0000

1000

0010

0001

L

L

LLLLLL

L

L

 

For each 
i

λ , the corresponding blocks ijJ  have the following properties: 

i) There is at least one ijJ  of order 
i

m ; all other ijJ  are of the order 

i
m≤ . 

ii) The sum of the orders of the ijJ  is 
i

n . 

iii) The number of ijJ  equals the geometric multiplicity of 
i

λ . 

iv) The number of ijJ  of each possible order is uniquely determined by 

T. 

Proof:  By the Primary Decomposition theorem, T is decomposable into 

operators 
r

TTT ,,, 21 L , i.e., 
r

TTTT ⊕⊕⊕= L21 ; where ( ) im

i
t λ−  is the minimal 

polynomial of 
i

T . Thus in particular, 

  ( ) ( ) 0,,01 =−=− ri m

rr

m

i
ITIT λλ L  

Set ITN
iii

λ−= ; then for ri ,,2,1 L=  

  INT
iii

λ+=   where 0=im

i
N  

That is 
i

T  is the sum of the scalar operator I
i

λ  and a nilpotent operator 
i

N , 

which is of index 
i

m , Since ( ) im

i
t λ−  is the minimal polynomial of 

i
T . 

 Now by above theorem on nilpotent operators, we can choose a basis so that 

i
N   is in canonical form. In this basis, INT

iii
λ+=  is represented by a block 
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diagonal matrix 
i

M  whose diagonal entries are the matrices ijJ . The direct 

sum J of the matrices 
i

M  is in Jordan canonical form and by remark-3, is a 

matrix representation of T. 

 Lastly, we must show that the blocks ijJ  satisfy the required properties. 

Property (1) follows from the fact that 
i

N   is of index 
i

m . Property (ii) is true 

since T and J have the same characteristic polynomial. Property (iii) is true 

since the nullity of ITN
iii

λ−= is equal to the geometric multiplicity of the 

eigenvalue 
i

λ . Property (iv) follows from the fact that the 
i

T  and hence the 

i
N are uniquely determined by T. 

Remark: The matrix J appears in the above theorem is called the Jordan 

Canonical form of the operator T. A diagonal block ijJ  is called a Jordan 

Block belonging to the eigenvalue 
i

λ . 

Observe that  

    























+























=























00000

10000

00100

00010

0000

0000

0000

0000

0000

1000

0010

0001

L

L

LLLLLL

L

L

L

L

LLLLLL

L

L

L

L

LLLLLL

L

L

i

i

i

i

i

i

i

i

λ

λ

λ

λ

λ

λ

λ

λ

 

i.e.,  NIJ iij += λ  

where N   is the nilpotent block appearing in the previous theorem. In fact 

we have proved the same in the above theorem by showing that T can be 

decomposed into operators, each the sum of a scalar and a nilpotent 

operator. 

Example: Suppose the characteristic and minimum polynomial of an 

operator T are respectively  

( ) ( ) ( )34
32 −−=∆ ttt  and ( ) ( ) ( )22

32 −−= tttm  
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Then the Jordan canonical form of T is one of the following matrices 







































3

30

13

20

12

20

12

M

LLLLL

MM

MM

MLLLLLM

MM

MM

LLLMLL

M

M

 or 









































3

30

13

2

2

20

12

M

LLLLL

MM

MM

LLLLLL

MM

LLLLL

MM

LLLLL

M

M

 

The first matrix occurs if T has two independent eigenvectors belonging to 

its eigenvalue 2; and the second matrix occurs if T has three independent 

vectors belonging to 2. 

Exercise: Determine all possible Jordan canonical forms for a linear 

operator VVT →:   whose characteristic polynomial is ( ) ( ) ( )23
52 −−=∆ ttt . 

Solution: Since 2−t  has exponent 3 in ( )t∆  must appear three times on the 

main diagonal. Similarly 5 must appear twice. Thus, the possible Jordan 

canonical forms are: 

(i)      (ii)      (iii)     

(iv)       (v)          (vi)   
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Exercise: Determine all possible Jordan canonical forms J for a matrix of 

order 5 whose minimal polynomial is ( ) ( )2
2−= ttm  

Solution: Clearly J must have one Jordan block of order 2 and the others 

must be of order 2 and 1. Thus, there are only two possibilities  

                  

Note that all the diagonal entries must be 2. Since 2 is the only eigenvalue. 

 

Cyclic Subspaces 

Let T be a linear operator on a vector space V of finite dimension over K. 

Suppose ( ) Vv ∈≠ 0 , the set of all vectors of the form ( )( )vTf , where ( )tf  

ranges over all polynomials over K, is a T-invariant subspace of V called the 

T-cyclic subspace of V generated by v ; we denote it by ( )TvZ ,  and denote 

the restriction of T to ( )TvZ ,  by 
v

T . We could equivalently define ( )TvZ ,  as 

the intersection of all T-invariant subspaces of V containing v . 

Remark 5: Consider the sequence 

  ( ) ( ) ( ) L,,,, 32 vTvTvTv  

of powers of T acting on v . Let k be the lowest integer such that ( )vT k  is 

linear combination of those vectors which precede it in the sequence; say  

  ( ) ( ) ( ) vavTavTavT k

k

k

01

1

1 −−−−= −

− L  

Then   ( ) 01

1

1 atatattm k

k

k

v
++++= −

− L  

is the unique monic polynomial of lowest degree for which ( )( ) 0=vTm
v

, we 

call ( )tm
v

 the T-annihilator of v  and ( )TvZ , . 
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Remark 6:  Suppose ( )TvZ , , 
v

T  and ( )tm
v

 be defined as above, then 

i) The set ( ) ( ){ }vTvTv k 1,,, −
L  is a basis of ( )TvZ , ; hence dim ( )TvZ ,  = 

k 

ii) The minimal polynomial of 
v

T  is ( )tm
v

. 

iii) The matrix representation of 
v

T  in the above basis is  

              



























−

−

−

−

−

=

−

−

1

2

2

1

0

1000

0000

0010

0001

0000

k

k

a

a

a

a

a

C

L

L

LLLLLL

L

L

L

 

The matrix C is called the companion matrix of the polynomial ( )tm
v

 

Proof: (i) By definition of ( )tm
v

, ( )vT
k

 is the first vector in the sequence 

( ) ( ) ( ) L,,,, 32 vTvTvTv  which is a linear combination of those vectors 

which precede it in the sequence; hence the set ( ) ( ){ }vTvTvB k 1,,, −= L  is 

linearly independent. We now only have to show that ( ) ( )BLTvZ =, , the 

linear span of B. But we have ( ) ( )BLvT k ∈ . We prove by induction that 

( ) ( )BLvT n ∈  for every n. Suppose kn >  and ( ) ( )BLvT n ∈−1 , i.e., ( )vT n 1−   is a 

linear combination of  ( ) ( )vTvTv k 1,,, −
L  . Then ( ) ( )( )vTTvT nn 1−=   is a linear 

combination of ( ) ( )vTvT k,, L , but ( ) ( )BLvT k ∈ ; hence ( ) ( )BLvT n ∈  for every n. 

Consequently ( )( ) ( )BLvTf ∈  for any polynomial ( )tf . 

Thus ( ) ( )BLTvZ =,  and so B is a basis as claimed 

(ii) Suppose ( ) 01

1

1 btbtbttm s

s

s ++++= −
− L is a minimal polynomial of 

v
T . Then 

since ( )TvZv ,∈  

  ( )( ) ( )( ) ( ) ( ) vbTbvTbvTvTmvTm s

s

s

v 01

1

10 ++++=== −
− L  
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Thus, ( )vT s  is a linear combination of ( ) ( )vTvTv s 1,,, −
L  and therefore sk ≤ . 

However, ( ) 0=Tm
v

 and so ( ) 0=
vv

Tm . Then ( )tm  divides ( )tm
v

 and so ks ≤ . 

Accordingly ks =  and hence ( ) ( )tmtm
v

= . 

(iii) we have 

( ) ( )vTvT
v

=  

( )( ) ( )vTvTT
v

2=  

………………………….…………………………. 

( )( ) ( )vTvTT kk

v

12 −− =  

           ( ) ( )( ) ( ) ( ) ( )vTavTavTavavTTvT k

k

k

v

k 1

1

2

210

1 −
−

− −−−−−== L  

By definition, the matrix 
v

T  in this basis is the transpose of the matrix of 

coefficients of the above system of equations; hence it is C, as required. 

 

4.10: Rational Canonical Form 

 In this section, we present the rational canonical form for a linear operator 

VVT →: . We emphasize that this form exists even when the minimal 

polynomial can not be factorized into linear polynomials [Recall this is not 

the case in Jordan canonical form]. 

Lemma: Let VVT →:  be a linear operator whose minimal polynomial is 

( )n
tf  where ( )tf  is a monic irreducible polynomial. Then V is the direct sum 

( ) ( ) ( )TvZTvZTvZV
r
,,, 32 ⊕⊕⊕= L  

of T-cyclic subspaces ( )TvZ
i
,  with corresponding T-annihilators 

( ) ( ) ( ) rnnn
tftftf ,,, 21 L ,   

r
nnnn ≥≥≥= L21  

Any other decomposition of V into T-cyclic subspaces has the same number 

of components and the same set of T-annihilators. 
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 We emphasize that the above lemma does not say that the vectors 
i

v or the 

T-cyclic subspaces ( )TvZ
i
,  are uniquely determined by T; but it does not say 

that the set of T-annihilators are uniquely determined by T. Thus T has a 

unique matrix representation 





















3

2

1

c

c

c

L
 

where 
i

c  are companion matrices. In fact, are the companion matrices to the 

polynomial ( ) in
tf  

Theorem: Let VVT →:  be linear. Let W be a T-invariant subspace of V and 

T  the induced operator on WV / . Prove (i) The T-annihilator of Vv ∈  

divides the minimal polynomial of T. (ii) The T -annihilator of WVv /∈  

divides the minimal polynomial of T. 

Proof: (i) The T-annihilator of Vv ∈  is the minimal polynomial of the 

restriction of T to ( )TvZ ,  and therefore as we know, it divides the minimal 

polynomial of T. 

(ii) The T -annihilator of WVv /∈  divides the minimal polynomial of T , 

which divides the minimal polynomial of T. 

Note: In case the minimal polynomial of T ( )n
tf  where ( )tf  is a monic 

irreducible polynomial, then the T-annihilator of Vv ∈  and T -annihilator of 

WVv /∈ are of the form ( )m
tf ; where nm ≤ . 

Remark: Let VVT →:  be a linear operator with minimal polynomial 

( ) ( ) ( ) ( ) sm

r

mm
tftftftm L21

21= ; where ( )tf
i

 are distinct monic irreducible 

polynomials. Then T has a unique block diagonal matrix representation  
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

























ssr

s

r

c

c

c

c

L

L

L

1

1

11

1

 

where ijc are companion matrices. In particular, the ijc are the companion 

matrices of the polynomials ( ) ijn

i
tf ,  

where          
srssssr

nnnmnnnm ≥≥≥=≥≥≥≥= LLL 21111211 ,  

The above matrix representation of T is called its rational canonical form. 

The polynomials ( ) ijn

i
tf are called the elementary divisors of T. 

Example: Let V be a vector space of dimension 6 over R, and let T be a 

linear operator whose minimal polynomial is ( ) ( )( )22 23 −+−= ttttm . Then the 

rational canonical form of T is one of the following direct sum of companion 

matrices 

(i) ( ) ( ) ( )222 233 −⊕+−⊕+− tCttCttC  

(ii) ( ) ( ) ( )222 223 −⊕−⊕+− tCtCttC  

(iii) ( ) ( ) ( ) ( )2223
22 −⊕−⊕−⊕+− tCtCtCttC  

where ( )( )tfC  is the companion matrix of ( )tf ;  that is 

 

             (i)                                      (ii)                                (iii)          
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Exercise: Let V be a vector space of dimension 7 over R, and let VVT →:  

be a linear operator whose minimal polynomial is ( ) ( )( )32 32 ++= tttm . Find 

the all possible rational canonical forms for T. 

Solution: The sum of the degrees of the companion matrices must add up to 

7. Also, one companion matrix must be ( )22 +t  and one must be ( )3
3+t . Thus 

the rational canonical form of T is exactly one of the following direct sum of 

companion matrices: 

(i) ( ) ( ) ( )322 322 −⊕+⊕+ tCtCtC  

(ii) ( ) ( ) ( )232 332 +⊕+⊕+ tCtCtC  

(iii) ( ) ( ) ( ) ( )3332
32 +⊕+⊕+⊕+ tCtCtCtC  

i.e.,  





























−

−

−

−

−

910

2701

2700

01

20

01

20





























−

−

−

−

−

−

610

90

910

2701

2700

01

20





























−

−

−

−

−

−

30

3

910

2701

2700

01

20

 

                    (i)                                             (ii)                            (iii) 

Exercise 1: Find all possible rational canonical forms for:  

i) Matrices of order 6 with minimal polynomial ( )( )22 13 ++ tt  

ii) Matrices of order 6 with minimal polynomial ( )3
1+t  

iii)    Matrices of order 8 with minimal polynomial ( )22 2+t ( )2
3+t  

Exercise 2: Find the rational canonical form of the Jordan block 





















λ

λ

λ

λ

000

100

010

001
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4.12: Quotient Spaces: 

 Let V be a vector space over a field K and W be a subspace of V. If v is any 

vector in V, we write v + W for the set of sums v + w with Ww ∈  and Vv ∈  

  { }WwWvWv ∈+=+ :  

These sets are called the cosets of W in V. 

Example: Let W be the subspace of 2
R  defined by 

  ( ){ }babaW == :,  

i.e., W is the line given by the equation x – y = 0. We can view Wv +  as a 

translation of the line, obtained by adding the vector v to each point in W. 

Wv +  is also a line and is parallel to W. Thus the cosets of W in 2
R  are 

precisely all the lines parallel to line. 

 

 

Exercise: Let W be a subspace of a vector space V. Show that the following 

are equivalent: 

i) Wvu +∈   ii) Wvu ∈−   iii) Wuv +∈  

Solution:  Suppose Wvu +∈ , then there exists Ww ∈0  such that 0wvu +=  

hence Wwvu ∈=− 0  

Conversely, suppose Wvu ∈− , then 0wvu =− , where Ww ∈0 . 

Hence  Wvwvu +∈+= 0 . Thus (i) and (ii) are equivalent. 

x 

y 

W 

v + W 
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We also have Wvu ∈− if and only if ( ) Wuvvu ∈−=−−  if and only if 

Wuv +∈  

Thus (ii) and (iii) are also equivalent. 

Exercise: Prove that the cosets of W in V partition V into mutually disjoint 

sets, i.e, 

(i) Any two cosets u + W and v + W are either identical or disjoint; and 

(ii) Each Vv ∈  belongs to a coset; in fact Wvv +∈ . 

Furthermore, WvWu +=+   if and only if Wvu ∈− , and so ( ) WvWwu +=++  

for any Ww∈ . 

Proof: Let Vv ∈ , we have Wvvv +∈+− 0  as W∈0  proving (ii). 

Now suppose the coset Wu +  and Wv +  are not disjoint, say the vector x 

belongs to both. Clearly, Wxu ∈−  and Wvx ∈− . For any Ww ∈0 , let 0wu +  

be any element in Wu + .  

Clearly,   ( ) ( ) ( ) Wwvxxuvwu ∈+−+−=−− 00  

Thereby, it follows that Wvwu +∈+ 0 and hence the coset Wu + is contained 

in Wv + . Similarly WuWv +⊆+  and thus WuWv +=+  

The last statement follows from the fact that WuWv +=+  if and only if 

Wvu +∈  that is equivalent to Wvu ∈− . 

 

Home Assignments 

Exercise 1: Let W be the solution space of homogeneous equation 

0432 =++ zyx . Describe the cosets of W in 3
R  

Exercise 2: Given a subspace W of a vector space V, show that the natural 

map WVV /: →η  defined by ( ) Wvv +=η  is linear. 

Exercise: Let W be a subspace of a vector space V. Suppose { }
r

www ,,, 21 L  is 

a basis of W and the set of cosets { }
s

vvv ,,, 21 L  where Wvv jj += a basis of the 
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quotient space is. Show that { }
rs

wwwvvvB ,,,,,,, 2121 LL=  is a basis of V. 

Thus dimV = dimW + dimV/W 

Solution:  Suppose Vu ∈ , since { }
jv  is a basis of WV / . 

             
ss

vavavaWuu +++=+= L2211  

Hence   wvavavau
ss

++++= L2211 ,  where Ww ∈  

Since { }
i

w  is a basis of W 

  
rrss

wbwbwbvavavau +++++++= LL 22112211  

Accordingly B generates V. 

 We now show that B is linearly independent. 

Suppose  022112211 =+++++++
rrss

wdwdwdvcvavc LL  

Then   Wvcvcvc
ss

==+++ 02211 L  

Since { }
jv  is independent, then c’s are all zero. Therefore, we get 

02211 =+++
rr

wdwdwd L . Also { }
i

w  is independent. Therefore all d’s are 

zero and hence B is a basis of V. 

Theorem: Suppose W is a subspace invariant under a linear operator 

VVT →: . Then T induces a linear operator T  on WV /  defined by 

( ) ( ) WvTWvT +=+ . Moreover, if T is a zero of any polynomial, then so is T , 

thus, the minimal polynomial of T  divides the minimal polynomial of T. 

Proof: We first show that T  is well defined, i.e., if WvWu +=+ , then 

( ) ( )WvTWuT +=+ , If WvWu +=+ , then Wvu ∈− and since W is T-invariant,  

( ) ( ) ( ) WvTuTvuT ∈+=−  

Accordingly, ( ) ( ) ( ) ( )WvTWvTWuTWuT +=+=+=+  as required 

We next show that T  is linear. we have 

        ( ) ( ) ( ) ( ) ( ) ( ) WvTuTWvuTWvUTWvWuT ++=++=++=+++  

                 ( ) ( ) ( ) ( )WvTWuTWvTWuT +++=+++=  
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and similarly, we can show that 

 ( ) ( ) ( ) ( ) WukTWkuTWkuTWkuT +=+=+=+  

       ( )( ) ( )WuTkWuTk +=+=  

Thus T  is linear. 

Now for any coset u + W in V/W, 

 ( ) ( ) ( )( ) ( )( ) ( )( ) ( )WuTWuTTWuTTWuTTWuTWuT +=+=+=+=+=+ 222  

Hence 
____

22
TT = . Similarly,  

____
nn

TT =  for any n. 

Thus for any polynomial  

  ( ) ∑=++= i

i

n

n taatatf 0L  

  ( )( ) ( )( ) ( ) ( )( )∑∑ +=+=+=+ WuTaWuTaWuTfWuTf i

i

i

i

____

 

           ( ) ( )∑∑ +=+= WuTaWuTa
i

i

i

i

____

 

             ( ) ( )( )WuTfWuTa
i

i +=+







= ∑

____

 

and so   ( )TfTf =






 __

. Accordingly if T is a root of ( )tf  then 

( ) ( )TfWTf === 0
_____

, i.e., T  is also a root of ( )tf . 

Theorem: Let VVT →:  be a linear operator whose characteristic 

polynomial factors into linear polynomials. Then V has a basis in which T is 

represented by a triangular matrix. 

Proof: To prove this result, we use induction on the dimension of V. If 

dimV = 1, then every matrix representation of T is of order 1 which is 

clearly triangular. 

 Now suppose dimV = n > 1 and that the theorem holds for spaces of 

dimension less than n. Since the characteristic polynomial of T factors into 

linear polynomials, T has at least one eigen value and so at least one non-
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zero eigenvalue v, say ( ) vavT 11= . Let W be the 1-dimensional subspace 

spanned by v. Set WVV /= , we have 1dimdimdim −=−= nWVV . Note also 

that W is invariant under T. Theorem by previous theorem T induces a linear 

operator T on V  whose minimal polynomial divides the minimal polynomial 

of T. since the characteristic polynomial of T is a product of linear 

polynomials, so is its minimum polynomial; hence so are the minimum and 

characteristic polynomials of T . Thus V  and T  satisfy the hypothesis of the 

theorem. Hence by induction, there exists a basis { }nvvv ,,, 32 L  of V such that 

  ( ) 2222 vavT =  

  ( ) 3332323 vavavT +=  

  ………………………… 

  ( ) nnnnnn vavavavT +++= L3322  

Let nvvv ,,, 32 L  be elements of V which belong to the cosets nvvv ,,, 32 L  

respectively. Then { }nvvv ,,, 2 L  is a basis of V. Since ( ) 2222 vavT = , we have 

  ( ) 02222 =− vavT  and so ( ) WvavT ∈− 2222  

But W is spanned by v, hence ( ) 2222 vavT −  is a multiple of v, say 

  ( ) vavavT 212222 =−  and so ( ) 222212 vavavT +=  

Similarly, for ni ,,4,3 L=  

  ( ) iiiiii vavavavT +++= L221  

Thus 

  ( ) vavT 11=  

  ( ) 222212 vavavT +=  

  ………………………… 

  ( ) nnnnnn vavavavT +++= L221  

and hence the matrix of T in this basis is triangular. 
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4.13: Bilinear Forms 

Let V be a vector space of finite dimensions over a field K. A bilinear form 

on V is a map KVVf →×:  which satisfies 

i) ( ) ( ) ( )vubfvuafvbuauf ,,, 2121 +=+  

ii) ( ) ( ) ( )2121 ,,, vubfvuafbvavuf +=+  

for all Kba ∈,  and all Vvu ii ∈, . We express condition (i) by satisfying f is 

linear in the first variable, and condition (ii) by satisfying f is linear in the 

second variable. 

Example: Let φ  and σ  are arbitrary linear functionals on V. Let  

KVVf →×:  be defined by ( ) ( ) ( )vuvuf σφ=, . The f is bilinear because φ  and 

σ  are both linear. (such a bilinear form f turns out to be the tensor product 

of φ  and σ  and so is sometimes written as σφ ⊗=f ). 

Example 2: Let f be the dot product on n
R ; i.e, 

( ) nnbabaabvuvuf +++== L221.,  where ( )iau = ,  ( )ibv = . 

Example 3: Let ( )ijaA =  be any matrix of order n over a field K. Then A 

may be viewed as a bilinear form f on n
K  by defining  

 ( ) ( )









































==

nnnnn

n

n

n

t

y

y

y

aaa

aaa

aaa

xxxAYXYXf
M

L

LLLL

L

L

L
2

1

21

22221

11211

21 ,,,,  

        nnnn

n

ji

jiij yxayxayxayxa +++== ∑
=

L21121111

1,

    

The above formal expression in variables ii yx ,  is termed the bilinear 

polynomial corresponding to the matrix A. 

Remark:  Let B(V) denote the set of bilinear forms on V. A vector structure 

is placed on B(V) by defining f + g and kf by: 
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  ( )( ) ( ) ( )vugvufvugf ,,, +=+  

  ( ) ( )vukfkf ,=  for any ( )VBgf ∈,  and Kk ∈  

Theorem: Let V be a vector space of dimension n over K. Let { }nφφφ ,,, 21 L  

be a basis of the dual space *V . Then { }njif ij ,,2,1,; L=  is a basis of ( )VB  

where ijf  is defined by ( ) ( ) ( )vuvuf jiij φφ=, . Thus in particular, ( ) 2dim nVB = . 

Proof:  Let { }neee ,,, 21 L  be a basis of V dual to { }iφ , we first show that { }ijf  

spans B(V). Let ( )VBf ∈  and suppose ( ) ijji aeef =, , where ijij faf ∑= . It 

suffices to show that ( ) ( )tsijijts eefaeef ,, ∑=  for nts ,,2,1, L= . We have            

                           ( )( ) ( ) ( ) ( )tjsiijtsijijtsijij eeaeefaeefa φφ∑∑∑ == ,,  

           ( )tsstjtisij eefaa ,===∑ δδ  

as required. Hence { }ijf  spans B(V). 

It remains to show that { }ijf  is linearly independent. Suppose 0=∑ ijij fa  for 

nts ,,2,1, L= . 

  ( ) ( )( ) rstsijijts aeefaee === ∑ ,,00  

The last step follows as above. Thus { }ijf  is independent and hence is a basis 

of B(V). 

Exercise 1: Given ( ) 33233222122111 487523, yxyxyxyxyxyxyxvuf −+−++−=  

 where ( )321 ,, xxxu =  and ( )321 ,, yyyv = . Express  f in matrix notation. 

Exercise 2: Let ( )ijaA =  be any matrix of order n over a field K. Show that 

the following map f is bilinear form on n
K  ; ( ) AYXYXf t=,  
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Bilinear form and Matrices 

Let f be a bilinear form on V, and let { }neee ,,, 21 L  be a basis of V. Suppose 

Vvu ∈,  such that nneaeaeau +++= L2211  and nnebebebv +++= L2211  

Then ( ) ( ) ( )∑=++++++=
n

ji

jijinnnn eefbaebebebeaeaeafvuf
,

22112211 ,,, LL  

Thus f is completely determined by the 2n  values ( )ji eef , . Thus matrix 

( )ijaA = , where ( )jiij eefa ,=  is called the matrix representation of f relative to 

basis { }ie  or simply the matrix of f in { }ie . It represents f in the sense that  

 ( ) ( ) ( ) [ ] [ ]e

t

e

n

n

n

ji

jiji vAu

b

b

b

Aaaaeefbavuf =





















==∑
M

L
2

1

21

,

,,,,,  

for all Vvu ∈, . 

Definition: A matrix B is said to be convergent to a matrix A if there exists 

an invertible (or non-singular) matrix P such that APPB
t= . 

  The rank of the bilinear form f on V is defined to be the rank of any matrix 

representation. We say that f is degenerate or non-degenerate according as to 

whether rank(f) < dimV or rank(f) = dimV. 

Exercise: Let f be a bilinear form on 2
R  defined by  

                           ( ) ( )( ) 2221112121 32,,, yxyxyxyyxxf +−=  

i) Find the matrix A of f in the basis ( ) ( ){ }1,1,0,1 21 == uu . 

ii) Find the matrix B of f in the basis ( ) ( ){ }1,1,1,2 21 −== vv  

Solution:  Set ( )ijaA =  where ( )jiij uufa ,= , we can easily calculate the values 

of all the entries of the matrix A. 

Thus, 






 −
=

02

12
A is the matrix of f in the basis { }ji uu , . 
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(iii) Similarly, 







=

60

93
B  is the matrix of f in the basis { }ji vv ,  

Definition: Let { }neee ,,, 21 L  be a basis of V and let { }nfff ,,, 21 L  be another 

basis. Suppose  

  nneaeaeaf 12121111 +++= L  

  nneaeaeaf 22221212 +++= L  

  …………………………. 

  nnnnnn eaeaeaf +++= L2211  

The the transpose P of the above matrix of coefficients is termed the 

transition matrix from the old basis { }ie  to the new basis { }if  

   





















=

nnnn

n

n

aaa

aaa

aaa

P

L

LLLL

L

L

21

22212

12111

 

Since the vectors { }if  are linearly independent, the matrix P is invertible. In 

fact, its inverse 1−
P  is the transition matrix from the basis { }if  back to the 

basis { }ie . 

Example:  Consider the following two basis of R
2
  

( ) ( ){ }1,0,0,1 21 == ee  and ( ) ( ){ }0,1,1,1 21 −== ff  

Then   ( ) ( ) ( ) 211 1,00,11,1 eef +=+==  

  ( ) ( ) ( ) 212 .01,000,10,1 eef +−=+−=−=   

Hence the transition matrix P from the basis { }ie  to the basis { }if  is  

   






 −
=

01

11
P   

We also have 

  ( ) ( ) ( ) ( ) 21 1.00,11,100,1 ffe −+=−−==  



Canonical forms                                                                                      Khanday M A 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KASHMIR SRINAGAR-190006 49 

  ( ) ( ) ( ) 22 0,11,11,0 ffe +=−+==  

Hence the transition matrix Q from the basis { }if  back to the basis { }ie  is 










−
=

11

10
Q  

Observe that P and Q are invertible, i.e., PQ = I 

Theorem: Let P be the transition matrix from a basis { }ie  to a basis { }if  in a 

vector space V. Then for any [ ] [ ]ef vvPVv =∈ , . Also [ ] [ ]ef vPv 1−=  

Proof: Suppose for ni ,,,2,1 L= , 

  ∑
=

=+++=
n

j

jijniniii eaeaeaeaf
1

2211 L  

Then P is the n-square matrix whose jth row is  

( )njjj aaa +++ L21          ….(1) 

Also suppose ∑
=

=+++=
n

i

iinn fkfkfkfkv
1

2211 L  

Then writing a column vector as the transpose of a new vector,  

  [ ] ( )t

nf kkkv ,, 21 L=        …(2) 

Similarly for if  in the equation for v, 

  j

n

j

n

j

iij

n

i

n

j

jiji

n

i

ii ekaeakfkv ∑ ∑∑ ∑∑
= == ==











=










==

1 11 11

  

    ( ) j

n

j

nnjjj ekakaka∑
=

+++=
1

2211 L  

Accordingly,  [ ]ev  is the column vector whose jth entry is  

  nnjjj kakaka +++ L2211       …(3) 

On the other hand, the jth entry of [ ] fvP  is obtained by multiplying the jth 

row of P by [ ] fv , i.e., (1) by (2). But the product of (1) and (2) is (3); hence 

[ ] fvP  and [ ]ev  have the same entries and thus [ ] [ ]ef vvP =  
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Furthermore, multiplying the above by 1−
P  gives [ ] [ ] [ ] ffe vvPPvP == −− 11 . 

Theorem: Let P be the transition matrix from one basis { }ie  to a basis { }ie′ . If 

A is the matrix of f in the original basis { }ie , then APPB
t=  is the matrix of f 

in the new basis { }ie′ . 

Proof: Let Vvu ∈, , since P is the transition matrix from { }ie  to a basis { }ie′ , 

we have [ ] [ ]ee uuP =′  and [ ] [ ] ;ee vvP =′  hence [ ] [ ] tt

e

t

e Puu ′= . Thus  

  ( ) [ ] [ ] [ ] [ ]e

tt

ee

t

e vAPPuvAuvuf ′′==,  

Since u and v are arbitrary elements of v. APP
t  is the matrix of f in the basis 

{ }ie′ . 

 

Alternating Bilinear Forms 

A bilinear form f on V is said to be alternating if 

i) f(u,v) = 0  for any Vv ∈ . If f is alternating, then  

  ( ) ( ) ( ) ( ) ( )vvfuvfvufuufvuvuf ,,,,,0 +++=++=  and so  

ii) f(u,v) = - f(v,u) for every Vvu ∈, . 

A bilinear form which satisfies (ii) is said to be skew-symmetric (or anti-

symmetric). If 011 ≠+  in K, then condition (ii) implies ( ) ( )vvfvvf ,, −=  which 

implies condition (i). In other words, alternating and skew symmetric are 

equivalent when 011 ≠+ . 

Theorem: Let f be an alternating bilinear form on V. Then there exists a 

basis of V in which f is represented by a matrix of the form 
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[ ]
[ ]

[ ]
















































−










−










−

0

0

0

01

10

01

10

01

10

O

O

 

Moreover, the number of 








− 01

10
 is uniquely determined by f ( because it is 

equal to ( )[ ].
2

1
frank  

Proof: If f = 0, then the theorem is obviously true, Also if dimV = 1, then  

  ( ) ( ) 0,, 2121 == uufkkukukf  and so 0=f . 

Accordingly, we can assume that dimV >1 and 0≠f  

Since 0≠f , there exists non-zero 12 kuu = Vuu ∈21,  such that ( ) 0, 21 ≠uuf . In 

fact multiplying 1u  by an appropriate factor, we can assume ( ) 1, 21 =uuf  and 

so ( ) 1, 21 −=uuf . Now 1u  and 2u  are linearly independent; because if say 

12 kuu = , then 

( ) ( ) ( ) 0,,, 111121 === uukfkuufuuf . Let U be the subspace spanned by 1u  and 

2u , i.e., ( )21 ,uuLU = . 

Note: (i) the matrix representation of the restriction of f to U in the basis  

{ }21 ,uu  is 








− 01

10
 

(ii) If Uu ∈  say ,21 buauu +=  then 

 ( ) ( ) bubuaufuuf −=+= 12121 ,,  
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 ( ) ( ) aubuaufuuf =+= 12121 ,,  

Let W consists of those vectors Ww ∈  such that ( ) 0, 1 =uwf  and ( ) 0, 2 =uwf . 

Equivalently 

  ( ){ }UueveryforuwfVwW ∈=∈= 0,:  

We claim that WUV ⊕=  It is clear that { }0=∩WU , and so it remains to 

show that WUV += . Let Vv ∈ . 

Set   ( ) ( ) 2112 ,, uuvfuuvfu −=  and uvw −=     …(1) 

Since u is a linear combination of 1u  and 2u , Uu ∈ . We show that Ww∈ . By 

(1) and (ii), ( ) ( );,, 11 vvfuuf =  

Hence   ( ) ( ) ( ) ( ) 0,,,, 1111 =−=−= uufuvfuuvfuwf  

Similarly,   ( ) ( )22 ,, uvfuuf =  and so 

   ( ) ( ) ( ) ( ) 0,,,, 2222 =−=−= uufuvfuuvfuwf  

Then Ww∈  and so by (1), wuv += , where Uu ∈  and Ww∈ . 

The shows that WUV +=  and therefore WUV ⊕= . 

 Now the restriction of f to W is an alternating bilinear form on W. By 

induction, there exists a basis { }nuuu ,,, 43 L  of W in which the matrix 

representing f restricted to W has the desired form. Thus { }nuuu ,,, 21 L  is a 

basis of V in which matrix representing f has the desired form. 

 

4.14: Symmetric bilinear form 

 A bilinear form f on V is said to be symmetric if  

   ( ) ( )uvfvuf ,, =  

for every Vvu ∈, . If A is a matrix representation of f, we can write  

  ( ) ( ) XAYAYXAYXYXf ttttt ===,  
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(we use the fact that AYX
t  is a scalar and therefore equals its transpose). 

Thus if f is symmetric,  

  ( ) ( ) AXYXYfYXfXAY ttt === ,,  

and since this is true for all vectors X and Y, it follows that t
AA =  or A is 

symmetric. Conversely if A is symmetric, then f is symmetric. 

 

Home Assignments 

Exercise: Find the symmetric matrix which corresponds to each of the 

following quadratic polynomials 

a) ( ) 22 764, yxyxyxq −−=  

b) ( ) 2, yxyyxq +=  

c) ( ) 222 6843,, zyzxzyxyxzyxq +−+−+=  

d) ( ) xzyzxyxq +−= 2, 2  

Theorem: Let f be a symmetric bilinear form on V over K (in 

which 011 ≠+ ). Then V has a basis { }nvvv ,,, 21 L  in which f represented by a 

diagonal matrix, i.e., ( ) 0, =ji vvf  for ji ≠ . 

Proof: If f = 0 or if dimV = 1, then theorem clearly holds. Hence we can 

suppose 0≠f and dimV = n >1. If ( ) ( ) 0, == vvfvq  for every Vv ∈ , then the 

polar form of f: ( ) ( ) ( ) ( )( )vquqvuqvuf +−+=
2

1
,  implies that f = 0. Hence we 

can assume there is a vector Vv ∈1  such that ( ) 0, 11 ≠vvf . Let U be the 

subspace spanned by 1v  and let W consist of those vectors Vv ∈  for which 

( ) 0,1 =vvf ,  

We claim that WUV ⊕=  
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(i) suppose WUu ∩∈ , since Uu ∈ , 1kvu =  for some scalar Kk ∈ . 

Since Wu ∈ , ( ) ( ) ( )11

2

11 ,,,0 vvfkkvkvfuuf ===  But ( ) 0, 11 ≠vvf , 

hence 0=k  and therefore 1kvu = , thus { }0=∩WU  

(ii) To prove WUV += . Let Vv ∈ , set  

( )
( ) 1

1

1

,

,
v

vvf

vvf
vw −=       …(1) 

       Then ( ) ( )
( )
( )

( ) 0,
,

,
,, 11

1

1
11 =−= vvf

vvf

vvf
vvfwvf  

       Thus Ww ∈ . By (1), v  is the sum of an element of U and an element of 

W. Thus WUV += . Therefore (i) and (ii) implies WUV ⊕= . 

Now f restricted to W is a symmetric bilinear form on W. But dimW= n-1; 

hence by induction there is a basis { }nvvv ,,, 32 L  of W such that ( ) 0, =ji vvf  

for ji ≠  and nji ≤≤ ,2 . But by the very definition of W, ( ) 0,1 =jvvf  for 

nj ,,3,2 L= . Therefore the basis { }nvvv ,,, 21 L  of V has a required property 

that ( ) 0, =ji vvf  for ji ≠ . 

Example: Let 
















−−

−

−

=

843

452

321

A , a symmetric matrix. It is convenient to 

form the block matrix ( )IA, : 

 We have  

( )
















−−

−

−

=

100843

010452

001321

,

M

M

M

IA  

Applying operations 212 2 RRR +−→  and 313 3 RRR +→  to ( )IA, , and then the 

corresponding operations 212 2 CCC +−→  and 313 3 CCC +→  to A, to obtain 
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















−

−

−

103120

012210

001321

M

M

M

 and then 
















−

−

103120

012210

001001

M

M

M

 

We next apply the operations 323 2 RRR +−→  and then the corresponding 

operation 323 2 CCC +−→  to obtain, 

 
















−−

−

127500

012210

001001

M

M

M

 and then 
















−−

−

127500

012010

001001

M

M

M

 

Now A has been diagonalized. We set 

















−

−

=

100

210

721

P   and then 
















−

=

500

010

001

APP t  

Definition: A mapping KVq →: is called quadratic form if ( ) ( )vvfvq ,=  for 

some symmetric bilinear form on V. 

 We call q the quadratic form associated with the symmetric bilinear form f 

if 011 ≠+  in K, then f is obtainable from q according to the identity  

  ( ) ( ) ( ) ( )( )vquqvuqvuf −−+=
2

1
,   (polar form of f) 

Remark: If f is represented by a symmetric matrix ( )
ijaA = , then q is 

represented in the form 

 ( ) ( ) ( )









































===

nnnnn

n

n

n

T

x

x

x

aaa

aaa

aaa

xxxAXXXXfXq
M

L

LLLL

L

L

L
2

1

21

22221

11211

21 ,,,,  

  ∑∑
<

++++==
ji

jiijnnn

ji

jiij xxaxaxaxaxxa 2
2

,

2

222

2

111 L  

The above formal expression in variable 
i

x  is termed the quadratic 

polynomial corresponding to the symmetric matrix A. Observe that if the 

matrix A is diagonalizable, then q has the diagonal representation 
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  ( ) 22

222

2

111 nnn

t xaxaxaAXXXq +++== L  

Example: Consider the following quadratic form on 2
R  

  ( ) 22 5122, yxyxyxq +−=  

 

Home Assignment 

Exercise: Let q be the quadratic form associated with the symmetric bilinear 

form f. Verify  

( ) ( ) ( ) ( )( )vquqvuqvuf −−+=
2

1
,   (Assume 011 ≠+ ) 

 

4.15: Real Symmetric bilinear form 

 In this section, we treat symmetric bilinear forms and quadratic forms on 

vector spaces over the real field R. 

Theorem:  Let f be a symmetric bilinear form on V over R. Then there is a 

basis of V in which f is represented by a diagonal matrix, and every other 

diagonal representation of f has the same number of positive entries and the 

same number of negative entries. 

Proof: We have by previous theorem, that there exists a basis { }
n

uuu ,,, 21 L  

of V in which f is represented by a diagonal matrix, say with P positive and 

N negative entries. Now suppose { }
n

www ,,, 21 L is another basis of V in which 

f is represented by a diagonal matrix, say with P′ positive and N ′  negative 

entries. We can assume without loss of generality that the positive entries in 

each matrix appear first. Since ( ) NPNPfrank ′+′=+= , it suffices to prove 

that PP ′= . 
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Let U be a linear span of 
P

uuu ,,, 21 L  and let W be a linear span of 

nPP
www ,,, 21 L+′+′ . Then ( ) 0, >vvf  for every non-zero Uv ∈  and ( ) 0, ≤vvf  for 

every non-zero Wv ∈ . Hence { }0=∩WU . Note that PU =dim , PnW ′−=dim . 

Thus 

 ( ) ( ) ( ) nPPPnPWUWUWU +′−=−′−+=∩−+=+ 0dimdimdimdim  

But     ( ) nVWU =≤+ dimdim . Hence nnPP ≤+′−  or PP ′≤ . 

Similarly  PP ′≥  and therefore PP ′=  as required 

Remark:  The above theorem and proof depend only on the concept of 

positivity, thus the theorem is true for any subfield K of the real field R.  

Definition: A real symmetric bilinear form f is said to be non-negative semi-

definite if ( ) ( ) 0, ≥= vvfvq  for every vector v and is said to be positive 

definite if ( ) ( ) 0, >= vvfvq for every vector 0≠v . 

Remark: By the above theorem, the difference S = P – N is called the 

signature of f. Also 

i) f is non-negative semi-definite if and only if ( )frankS =  

ii) f is positive definite if and only ( )VS dim=  

Example:  Let f be the dot product on n
R , i.e.,  

( )
nn

bababavuvuf +++== L2211.,  

Where ( )
i

uu =  and ( )
i

vv = . 

Note that f is symmetric, since  

  ( ) ( )uvfuvvuvuf ,.., ===  

Furthermore, f is positive semi-definite because  

  ( ) 0.,
22

2

2

1 >+++==
n

aaauuuuf L ; where 0≠u  

Corollary: Any real quadratic form q has a unique representation in the 

form 



Canonical forms                                                                                      Khanday M A 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KASHMIR SRINAGAR-190006 58 

  ( ) 22

2

2

1

22

2

2

121 ,,,
rSSsn

xxxxxxxxxq +++−+++= ++ LLL  

The above result for real quadratic forms is some times referred to as the 

Law of Inertia or Sylvester theorem. 

 

Home Assignment 

Exercise: For each of the following real symmetric matrices A, find a non-

singular matrix P such that APP
t  is diagonal and find its signature. 

i) 
















−

−−

−

=

852

573

231

A  

ii) 
















−

−=

121

221

110

A  

Exercise: Let 



















=

na

a

a

A
O

2

1

, a diagonal matrix over K, Show that 

i) For any non-zero scalar Kkkk
n

∈,,, 21 L , A is congruent to a 

diagonal matrix with diagonal entries 2

ii
ka ; 

ii) If k is a complex field C, then A is congruent to a diagonal matrix 

with only 1’s and 0’s as diagonal entries; 

iii) If k is the real field R, then A is congruent to a diagonal matrix 

with only 1’s, -1’s and 0’s as diagonal entries. 

Solution: 

i) Let P be the diagonal matrix with diagonal entries 
i

k , then 
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

















=























































=

2

2

22

2

11

2

1

2

1

2

1

nn
nnn

t

ka

ka

ka

k

k

k

a

a

a

k

k

k

APP
OOOO

 

ii) Let P be the diagonal matrix with diagonal entries   







=

≠
=

01

0/1

i

ii

i

aif

aifa
b   ;   

Then APP
t has the required form. 

iii) Let P be the diagonal matrix with diagonal entries   







=

≠
=

01

0/1

i

ii

i

aif

aifa
b   ;   

Then APP
t has the required form. 

 

4.16: Hermitian Forms 

 Let V be a vector space of finite dimension over the complex field C. Let 

CVVf →×:  be such that  

i) ( ) ( ) ( )vubfvuafvbuauf ,,, 2121 +=+  

ii) ( ) ( )
_______

,, uvfvuf =  

where Cba ∈,  and Vvu
i

∈, . The f is called Hermitian form on V. 

By (i) and (ii), we have 

  ( ) ( ) ( ) ( )
______________________

21

__________________

2121 ,,,, uvbfuvafubvavfbvavuf +=+=+  

        ( ) ( ) ( ) ( )
_______

2

______

1

_________

2

________

1 ,,,, vufbvufauvfbuvfa +=+=  

i.e., (iii) ( ) ( ) ( )
_______

2

______

121 ,,, vufbvufabvavuf +=+  

Note that ( ) ( )
_______

,, uvfvuf =  and so ( )vvf ,  is real for any Vv ∈ . 
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Exercise: Let A be a Hermitian matrix, Show that f is a Hermitian form on 

nC ; where f is defined by ( ) YAXYXf t=, . 

Solution:  For all Cba ∈,  and nCYXX ∈,, 21  

  ( ) ( ) ( ) YAbXaXYAbXaXYbXaXf
ttt

212121 , +=+=+  

Hence f is linear in the first variable. Also 

  ( ) ( ) ( )XYfXAYXAYYAYYAXYAXYXf ttttttt ,, *
______________________________________

======  

Hence f is Hermitian form on nC . 

Exercise:  Let f be a Hermitian form on V and H is the matrix of f in a basis 

{ }
n

eee ,,, 21 L of V. Show that  

i) ( ) [ ] [ ]e

t

e vHuvuf
___

, =  for all Vvu ∈,  

ii) If P is the transition matrix from { }
i

e  to a new basis { }
i

e′  of V, then 

PHPB
t=  (or HQQB *= , where PQ = ) is the matrix of f in the new 

basis { }
i

e′ . 

Proof:  i) Let Vvu ∈,  and suppose  

nn
eaeaeau +++= L2211  and 

nn
ebebebv +++= L2211  

Then ( ) ( )
nnnn

ebebebeaeaeafvuf ++++++= LL 22112211 ,,  

 ( ) ( ) [ ] [ ]e

t

e

n

nji

ji

ji vHu

b

b

b

Haaaeefba =





















=∑
M

L
2

1

21

,

,,,,  

iii) Since P is a transition matrix from { }
i

e  to { }
i

e′ ,  

then [ ] [ ]ee uuP =′ ,   [ ] [ ]ee vvP =′  and so,  

[ ] [ ] tt

e

t

e PuPu ′=  ,  [ ] [ ]evPv ′=
______

 

Thus by (i), ( ) [ ] [ ] [ ] [ ]e

tt

ee

t

e vPHPuvHuvuf ′==
______

,  
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But u and v are arbitrary elements of V, hence PHP
t  is the matrix of f 

in the basis { }
i

e′  

Remark: The mapping RVq →: defined by ( ) ( )vvfvq ,= is called Hermitian 

quadratic form or complex quadratic form associated with the Hermitian 

form f. We can obtain f from q according to the following identity called the 

polar form of f. 

( ) ( ) ( ){ } ( ) ( ){ }ivuqivuqvuqvuqvuf −−++−−+=
4

1

4

1
,  

Now suppose { }
n

eee ,,, 21 L  is a basis of V, the matrix ( )
ijhH = , where 

( )
jiij eefh ,=  is called the matrix representation of f in the basis { }

i
e . Since 

( ) ( )
_______

,, ijji eefeef = ; hence H is Hermitian and, in particular the diagonal 

entries of H are real. 

Example: Let f be the dot product on nC , that is  

  ( )
nn

wzwzwzvuvuf +++== L2211.,  where ( )
i

zu =  and ( )
i

wv = . 

Then f is a Hermitian form on nC . Moreover, f is positive definite since, for 

any 0≠v  

  ( ) 0,
22

2

2

12211 >+++=+++= nnn zzzzzzzzzvuf LL  

Exercise: Let H be a Hermitian matrix given below. Find the non-singular 

matrix P such that PHP
t  is diagonal. 

  
















+−

−−

+

=

7322

3241

211

ii

ii

ii

H  

Solution: First form the block matrix ( ) :, IH  

We have  
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( )
















+−

−−

+

=

1007322

0103241

001211

,

M

M

M

ii

ii

ii

IH  

Applying row operations ( ) 212 1 RRiR ++−→  and 313 2 RiRR +→  to ( )IH , , and 

then the corresponding Hermitian column operations ( ) 212 1 CCiC +−−→  and 

313 2 CiCC +−→  to H, to obtain 

 
















+−−

+

102350

011520

001211

ii

ii

ii

M

M

M

 and then 
















+−−

102350

011520

001001

ii

ii

M

M

M

 

We next apply the operations 323 25 RiRR +−→  and then the corresponding 

operation 323 25 CiCC +→  to obtain, 

















−+−

+−−

25951900

011520

001001

ii

ii

M

M

M

 and then 
















−+−

+−

25953800

011020

001001

ii

i

M

M

M

 

Now H has been diagonalized, We set 

















−

++−

=

200

510

9511

i

ii

P   and then 
















−

=

3800

020

001

PAP t  

Observe that signature S of H is 

    S = 2-1=1 

Theorem: Let f be a Hermitian form on V. Then there exists { }
n

eee ,,, 21 L  of 

V in which f is represented by a diagonal matrix, i.e., ( ) 0, =ji eef  for ji ≠ . 

Moreover, every diagonal representation of f has the same number P of 

positive entries, and the same number N of negative entries. The difference 

S = P-N is called the signature of f. Analogously f is non-negative semi-

definite if ( ) ( ) 0, ≥= vvfvq  for every Vv ∈  and if ( ) ( ) 0, >= vvfvq  for every 

0≠v , then f is positive definite. 
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Proof: Let f be a Hermitian form on V. Then there exists a basis { }
n

eee ,,, 21 L  

of V in which f is represented by a diagonal matrix, i.e., ( ) 0, =ji eef  for ji ≠ . 

Moreover, every diagonal representation of f has the same number P of 

positive entries, and the same number N of negative entries. 

 Note that the second part of the theorem does not hold for complex 

symmetric bilinear forms (as seen by part (ii) in exercise before Hermitian 

forms). However the proof of the previous theorem (Real symmetric bilinear 

form) does carry over the Hermitian cases. 

Exercise: Show that any bilinear form f on V is the sum of a symmetric 

bilinear form and a skew-symmetric bilinear form. 

Solution:  Set    ( ) ( ) ( ){ }uvfvufvug ,,
2

1
, +=   and ( ) ( ) ( ){ }uvfvufvuh ,,

2

1
, −=  

Clearly,  

( ) ( ) ( ){ } ( ) ( ){ } ( )uvgvufuvfuvfvufvug ,,,
2

1
,,

2

1
, =+=+=  

⇒    g is symmetric, and 

  ( ) ( ) ( ){ } ( ) ( ){ } ( )uvhvufuvfuvfvufvuh ,,,
2

1
,,

2

1
, −=−−=−=  

⇒    h is skew-symmetric. 

 Furthermore 

  hgf +=  

 


