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Topics on Algebra for INMO

Basics on functions
— Increasing & Decreasing functions
— Even and Odd functions

Polynomials

Fundamental theorem of algebra
Fundamental theorem of arithmetic's
Problems and Solutions for INMO exam



Problem-1:

Let a, b, and c be real and positive parameters.

Solve the equation

\/a+bx+\/b+cx+\/c+ax:\/b—aa:+\/c—b:z+\/a—c:1:.

Solution 1

It is easy to see that x = 0 is a solution. Since the right hand side is a
decreasing function of z and the left hand side is an increasing function
of z, there is at most one solution.

Thus x = 0 is the only solution to the equation.
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Problem 2
Find the general term of the sequence defined by ¢ = 3, ; = 4 and

= e :
.rn.'.l — In_l - 'l.l»’l

for alln € N,

Solution 2

We shall prove by induction that =, = n + 3. The claim is evident for
n=0,1.

For k> 1,ifxp_1 =k+ 2 and zx =k + 3, then

The1 =To_y —kxr = (k+2)2 —k(k+3) =k +4,

as desired.

This completes the induction.
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Problem 3 [AHSME 1999]
Let z,,xz5,...,z, be a sequence of integers such that

(1] =1 <2 € 2, foris= 1;2:u05m;
(ii) ;s + T2+ - + 2, = 19;
(iii) =3 + x5 +--- + 22 = 99.
Determine the minimum and maximum possible values of

3 3 |
.’B1+$2+°"+.’Bn.

Solution 3

Let a,b, and ¢ denote the number of —1s, 1s, and 2s in the sequence,
respectively. We need not consider the zeros. Then a, b, c are nonnegative
integers satisfying

—a+b+2c=19 and a + b+ 4c = 99.

It follows that a = 40—c and b = 59 — 3¢, where 0 < ¢ < 19 (since b > 0),
SO
T3 +25+4 - +z3 = —a+ b+ 8= 19 + 6c.
When ¢ = 0 (a = 40,b = 59), the lower bound (19) is achieved.
When ¢ = 19 (a = 21, b = 2), th&apper'bound (133) is achieved. ’



Problem 4 [AIME 1997]
The function f, defined by

axr + b
cx+d’

f(z) =
where a, b, ¢, and d are nonzero real numbers, has the properties

f(19) =19, f(97)=97, and f(f(z))==,
d

for all values of x, except -7
Find the range of f.

Solution 4, Alternative 1
For all z, f(f(z)) = z, i.e.,

ax + b
a(cx+d)+b

ax + b -4
c(cx+d)+d
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le.
(a® + be)z + b(a + d)

c(a + d)x + bc + d?

?

l.e.
c(a+d)z® + (d? —a®)z — b(a + d) =0,

which implies that c(a + d) = 0. Since ¢ # 0, we must have a = —d.
The conditions f(19) = 19 and f(97) = 97 lead to the equations
19°c=2-19a+b and 97°c=2-97a+b.

Hence
(97% — 19%)c = 2(97 — 19)a.

It follows that a = 58c, which in turn leads to b = —1843c. Therefore

58z — 1843 1521

fl@) = — ez~ =58+ 53

which never has the value 58.
Thus the range of f is R — {58},



Solution 4, Alternative 2

The statement implies that f is its own inverse. The inverse may be
found by solving the equation

ay + b
xTr =
cy +d
for y. This yields :
dxr —
-1 — ‘
f=(@) —cT +a
The nonzero numbers a, b, ¢, and d must therefore be proportional to d,
—b, —c, and a, respectively; it follows that a = —d, and the rest is the

same as in the first solution.

Problem 5
Prove that

(a—b)2 _a+b (a — b)?
< — < 7
8a — 2 T

foralla > b > 0.

Solution 5, Alternative 1

Note that ) ,
(\/5+\/5) <1< (ﬁ+\/5)

2V/a 2v/b



l.e.

Wat VIRE VR (o e (VEEVBRGE V
1.e.
(a — b)? <a-2J_+b (a — b)?
8a 8 '
from which the result follows.

Solution 5, Alternative 2

Note that
a+b 2—a,b
a+b = _ 2 B (a — b)?
2 atb b 20a+b)+4vVab

Thus the desired inequality is equivalent to
da > a + b+ 2Vab > 4b,

which is evident as a > b > 0 (which implies a > Vab > b).



Problem 6 [St. Petersburg 1989]

Several (at least two) nonzero numbers are written on a board. One may

: b
erase any two numbers, say a and b, and then write the numbers a + <

2

and b — % instead.

Prove that the set of numbers on the board, after any number of the
preceding operations, cannot coincide with the initial set.

Solution 6

Let S be the sum of the squares of the numbers on the board. Note that
S increases in the first operation and does not decrease in any successive
operation, as

(a_*_g 2_*_(()_2)2:_5_( 2+b2)>a2+b2
2 2 4 -

with equality only if a = b = 0.
This completes the proof.



Problem 7 [AIME 1986]
The polynomial

l—z+x%—23+... 4218 — 17

may be written in the form
ao + a1y + axy® + -+ + a16y'® + ar17y'’,

where ¥y = x + 1 and a;s are constants. Find aa.

Solution 7, Alternative 1
Let f(z) denote the given expression. Then

:Cf(I):I—332+I3_.,,_x]8
and
(1+z)f(x) =1— 8.

Henee 1—(y— DB 1—(y— 1)1
f@) = fly—1) = T — =D

Therefore a3 is equal to the coefficient of ¥® in the expansion of

1—(y— 1'%,

18
a, = (3) = 816.

Solution 7, Alternative 2

ie.,

Let f(x) denote the given expression. Then

f@=fly-D=1-@-D+E -1D°— - —(y-17
=1+0-+1-p?+ -+ 1=y

— + '+ - + 1 —
an = .
Here we used the formula

() + (20 = (G2s)
% and(ﬁ;uokedU|n

Thus

and the fact that
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Problem 8
Let a, b, and ¢ be distinct nonzero real numbers such that

1 1 1
a+ —-—=b+—=c+ —.
b C a

Prove that |abc| = 1.

Solution 8
From the given conditions it follows that

b—c cC— a a—0b
b , b—c = = , and ¢ — a = o

a— b=

Multiplying the above equalions gives (abc)? = 1, from which the desired
result follows.

Problem 9 [Putnam 1999]
Find polynomials f(x), g(x), and h(x), if they exist, such that for all x,

—1 if x < —1
|l f(x)| — lg(x)| + h(z) = ¢ Bxz+2 if-1<zx<0
—2x+4+2 ifx>0.

khanday@uok.edu.in
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Problem 10

Find all real numbers x for which

8% 4 27% 7

1274 18% 6
Solution 10
By setting 2*¥* = a and 3* = b, the equation becomes

a® + b 7
a2b + b2a 6’

i.e.
a’? — ab + b? . Z
ab 6’
i.e.
6a? — 13ab + 66% = 0,
i.e.
(2a — 3b)}(3a — 2b) = C.
Therefore 2%+ = 3%+! or 27— = 3*~!, which implies that £ = —1 and
z = 1.
It is easy to check that both x = —1 and x = 1 satisfy the given equation.

Problem 11 [Romania 1990]
Find the least positive integer . such that

(o)
< M
n

for all positive integers n.

Solution 11
Note that

2n 2n 2n 2n o9n _ am
and for n = 5,
(10&1 — 252 > 35,
handay@uok.edu.in

Thus m = 4.



Problem 12
Let a, b, ¢, d, and e be positive integers such that

abcde =a+b+c+d+e.

Find the maximum possible value of max{a, b, c,d, e}.

Solution 12, Alternative 1
Suppose that ¢ < b < ¢ £ d € e. We need to find the maximum value of
e. Since
e<a+b+c+d+e<be,
then e < abcde < 5¢, ie. 1 < abed < 5.
Hence (a, b’ C’ d) = (1) l) 1) 2)’ (17 1’ 1) 3)7 (1) 17 1! 4)’ (1) 17 2) 2)" or
(1,1,1,5), which leads to max{e} = 5.
Solution 12, Alternative 2
As before, suppose that ¢ < b < ¢ < d < e. Note that

1 1 1 + 1 1
" bede ' cdea ' deab  eabe ' abed

<i+i+i+l+l-—Ld+c
“de de de e d de

Therefore, de < 3+d+eor (d —1)(e - 1) <4.
Ifd=1,thena=56=c=1and 4 + ¢ = ¢, which is impossible.
Thusd—1>1lande—1<4o0re<s.

It is easy to see that (1,1,1,2,5) is a solution.

Therefore max{e} = 5.

Comment: The second solution can be used to determine the maxi-
mum value of {z,%2,...,Z,}, when z1,22,...,x, are positive integers
such that

Z1Zy X =1+ X2+ + T

Problem 13
Evaluate

3 4 khanday@uok.edzpon
N+t +a Farsar+4 7 10991 3 2000! + 20011
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Solution 13

Note that
k+2 _ k+ 2
K+k+1)0+(+2)! kl+k+1+(k+1)(k+2)]
_ 1
T OklNk+2)
_ k+1
T (k+2)
_ (k+2)—-1
(e +2)
1 1

By telescoping sum, the desired value is equal to

1 1
2 2001

Problem 14
Letx=+va2+a+1—+va?2 —a+1,acR.

Find all possible values of x.

Solution 14, Alternative 1

Since
Va? +]al +1 > |al
and
_ 2a
T Ve ratritvar—at 1l
we have

|z| < [2a/a| = 2.

Squaring both sides of

z+vVal—a+l=+vVa2+a+1

yields khanday@uok.edu.in

22va? —a+1=2a— z°.

(k+1)1  (k+2)!
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Squaring both sides of the above equation gives

z2(z% — 4)

4(172 - 1)02 = x2(x2'_ 4) or a2 = m.

Since a2 > 0, we must have
z¥(z® —4)(z® - 1) >0,

Since |z| < 2, 2 —4 < 0 which forces z2 — 1 < 0. Therefore, —1 < z < 1.
Conversely, for every x € (—1, 1) there exists a real number a such that

r=+val+a+1—+va2—a+l.

Solution 14, Alternative 2

Let A = (—1/2,V3/2), B = (1/2,V3/2), and P = (a,0). Then P
is a point on the z-axis and we are looking for all possible values of
d=PA— PB.

By the Triangle Inequality, |PA — PB| < |AB| = 1. And it is clear
that all the values —1 < d < 1 are indeed obtainable. In fact, for such
a d, a half hyperbola of all points @ such that QA — QB = d is well
defined. (Points A and B are foci of the hyperbola.)

Since line AB is parallel to the z-axis, this half hyperbola intersects the
z- axis, i.e., P is well defined.

Problem 15
Find all real numbers z for which

10% + 11% + 12* = 13* + 14%.

Solution 15

It is easy to check that x = 2 is a solution. We claim that it is the only
one. In fact, dividing by 13 on both sides gives

10V* (LT 12)T (1Y
13 13 13 13/
The left hand side is a decreasing function of z and the right hand side

is an increasing function of xl'(handay@uok eduiin

Therefore their graphs can have at most one point of intersection.
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Comment: More generally,

a?+(a+1)?+ -+ (a+k)?
=(a+k+1)2+(a+k+2)%+ -+ (a+ 2k)?
fora=k(2k+1), k€N
Problem 16 [Korean Mathematics Competition 2001]
Let f: Nx N — N be a function such that f(1,1) = 2,
fm+1,n) = f(m,n) + mand f(m,n+1) = f(m,n) —n
for all m,n € N.
Find all pairs (p, g) such that f(p,q) = 2001.

Solution 16

We have
= f(p-2,9)+(p—-2)+(p—-1)
= f(LQ)+ﬂpT_L)
= f(lyq—l)—(q—l)+@
: qig—1)  plp—1)
- f(]-:]-) - 2 + 2
= 2001.

Therefore
P(Pz— 1 _ q(q; D _ 1099,

ie.

(p—q)(p+qg—1)=2-1999.

Note that 1999 is a prime number and that p—¢ < p+¢—1 for p,q € N.
We have the following two cases:

1. p—g=1and p+g— 1= 3998. Hence p = 2000 and g = 1999.
khanday@uok.edu.in 17
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Therefore {p, ¢) = (2000, 1999) or {1001, 999).

Problem 17 [China 1983)
Let f be a function defined on [0, 1] such that

F(0) = f(1) =1and |f(a) - f(b)] < |a — b,

for all @ # b in the interval [0, 1].
Prove that L
fl@) — FO) < 5.

Solution 17
We consider the following cases.

1. |a — b| € 1/2. Then |f{a) — f(b)] < |a —b] £ %, as desired.

2. |la —b| > 1/2. By symmetry, we may assume that o > b. Then

[f(a) = F (&)l = |f(a)— f(1) + f(0) — f(b)
< |f(@) = F(DI+1f(0) — F(b)
< |a—1|+ |0 —bj
= l—a+b-0
= 1—(a—05)
< 1

5

as desired.

Problem 18
Find all pairs of integers (z,y) such that

24y’ = (= +y)?

Solution 18

Since z° +y°® = (z +y)(2? — xy + y?), all pairs of integers (n, —n), n € Z,
are solutions.

Suppose that x + y # 0. Then the equation becomes

2 —zy+y’ =z +y,

i.e.

xﬁ(ﬁa%é"y@ﬁo-'k.%zdﬁiﬁ =0. 18



Treated as a quadratic equation in z, we calculate the discriminant
A=y? +2+1—-4y* +4y = —3y> + 6y + 1.
Solving for A > 0 yields

3-2v3 _ _3+2V3
—3  SVST3
Thus the possible values for y are 0, 1, and 2, which lead to the solutions
(1,0), (0,1), (1,2), (2,1), and (2,2).

Therefore, the integer solutions of the equation are (z,y) = (1,0), (0, 1),
(1,2), (2,1), (2,2), and (n, —n), for all n € Z.

Problem 19 [Korean Mathematics Competition 2001]
Let

for real numbers z. Evaluate

1 2000
f(mm)+f(mm)+'”+f(mm)‘
Solution 19

Note that f has a half-turn symmetry about point (1/2,1/2). Indeed,

2 2.4 47
-7 +2 4+2-4¢ 4742’

fl—z)=

from which it follows that f(z) + f(1 —x) =1.
Thus the desired sum is equal to 1000.

Problem 20
Prove that for n > 6 the equation

1
—+ 5+t = =1
Ty X3

has integer solutions.

Solution 20
Note that

1 1 handay@uok.edy.inl
a? " (Za ¥ (2a)? @(20)2 + (2a)%’
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from which it follows that if (1,22, -, 2,) = (a1,4a2," - ,a,) is an inte-
ger solution to

1 1 1
S+ =+ + - = 1,
7 x5 x
then
(1'1,332, T =1y Ty Tutly Tn42: $n+3)
= (01,0.2, o, n_1, 20'17.) 20'71.1 2011,7 2an:)
is an integer solution to
1 1 1
S+t =+t -+ =3 = 1.
z3 x5 Th+3

Therefore we can construct the solutions inductively if there are solutions
for n =6,7, and 8.

Since z1 = 1 is a solution for n = 1, (2,2,2,2) is a solution for n = 4,
and (2,2,2,4,4,4,4) is a solution for n = 7.

It is easy to check that {2,2,2,3,3,6) and (2,2,2,3,4,4,12,12) are solu-
tions for n = 6 and n = 8, respectively. This completes the proof.

Problem 21 [AIME 1988]
Find all pairs of integers (a, b) such that the polynomial

az'” + bx1% + 1

is divisible by z2 — x — 1.
Solution 21, Alternative 1

Let p and g be the roots of 22 — x — 1 = 0. By Vieta’s theorem,
p+¢g =1and pg = —1. Note that p and ¢ must also be the roots of
ax'” + bx'® +1 = 0. Thus

ap'” + bp'® = —1 and ag'” + bg!® = 1.

Multiplying the first of these equations by ¢'®, the second one by p!S,
and using the fact that pg = —1, we find

ap+ b= —¢' and ag+ b = —p'°. (1)

Thus

16 __ ,16 i
0= 2 L FEHELEH o+ a)
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Since

ptg = 1,

PP+e® = (p+g)’-2p=1+2=3
Ptgt = P+ -2 =9-2=7
P = (o't -2t =49 -2 =47,

it follows thata = 1-3-7-47 = 987.
Likewise, eliminating a in {1) gives

b = pl7 — g17
p—q
— PS4 plSq4plig? 4. 4 gl®
= (@°+¢°) +pa(p" + ') + P (" +¢'%)
+o D' (P + %) + P
= (P +e") -+ - (PP )+ 1
For n > 1, let kg, = p*™ + ¢?™. Then ky = 3 and ks = 7, and

— 2n+4 2n+4
kopeqa = pT0 4 g™

- (p2n+2 + q2n+2)(p2 + q2) _ p2q2(p2n + q2n)

= 3koniz — k2n
for n > 3. Then ks = 18, ks = 47, klo = 123, klg = 322, k14 = 843,
ks = 2207.
Hence

—b=2207 — 843 +322 - 123 4+47-184+7—-3+1 = 1597

or
(a,b) = (987, —1597).

Solution 21, Alternative 2
The other factor is of degree 15 and we write

(c152'% — gz’ + - Feazr—c)(z® —z— 1) =ax' + bx'® 4+ 1.

Comparing coefficients:

z%: ¢ =1,

zl: e¢—c1=0,c0=1
I<hanc§§y@uo¢oed91iri' c2=0,c0 =2,
and for 3< k<15, zF: —cp_g—cx_1+cx =0.
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It follows that for £ < 15, ¢x = Fi4+1 (the Fibonacci number).

Thus a = Cig = FIS = 987 and b = —Ci14 — C15 = —F17 = —1597 or
(a,b) = (987, —1597).

Comment: Combining the two methods, we obtain some interesting
facts about sequences k3, and F3,_;. Since

3Fon43 — Fonys = 2Fony3 — Fonpqg = Fonys — Fonpo = Fonqn,
it follows that F5,_; and kg, satisfy the same recursive relation. It is

easy to check that k; = £ 4+ F3 and k4 = F5 + F5.
Therefore ko, = Fon_1 + Fon41 and

Fonie1 = kon —kon—o + kaneg — -+ + {(=1)""Thka + (=1)™.

Problem 22 [AIME 1994]

Given a positive integer n, let p(n) be the product of the non-zero digits
of n. (If n has only one digit, then p(n) is equal to that digit.) Let

S=p(1)+ p(2)+ - + p(999).

What is the largest prime factor of §7

Solution 22

Consider each positive integer less than 1000 to be a three-digit number
by prefixing Os to numbers with fewer than three digits. The sum of the
products of the digits of all such positive numbers is

(0-0-0+0-0-1+---4+9-9-9)—-0-0-0
=(0+1+---4+9)°-0.

However, p(n) is the product of non-zero digits of n. The sum of these
products can be found by replacing 0 by 1 in the above expression, since
ignoring 0’s is equivalent to thinking of them as 1’s in the products. (Note
that the final 0 in the above expression becomes a 1 and compensates
for the contribution of 000 after it is changed to 111.)

Hence

S =463 — 1= (46 — 1)(462+46+1) =3%.5.7.103,
khanday@uok.edu.in
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2. For positive real numbers a, b, ¢, which of the following statements

necessarily implies a = b = ¢: (I) a(b + ¢®) = b(c® + a3) = c(a® + b?),
(IT) a(a® + b%) = b(b3 + ) = c(c® + a®) ? Justify your answer.

Solution: We show that (I) need not imply that a = b = ¢ where as (II) always implies a = b = c.

Observe that a(b® + ¢3) = b(c® + a?) gives ¢*(a — b) = ab(a? — b?). This gives either a = b or
ab(a + b) = 3. Similarly, b = c or be(b+c¢) = a3. If a # b and b # ¢, we obtain

abla +b) =, be(b+c) = a’.

Therefore
b(a® — ) +b*(a—c)=c* —d’.

This gives (a — ¢)(a? + b? + ¢ + ab + bc + ca) = 0. Since a, b, ¢ are positive, the only possibility is
a = c. We have therefore 4 possibilities: a =b=c;a# b, b#cand c=a; b # ¢, c # a and a = b;
c#a,a#bandb=c.

Suppose a = b and b, a # c. Then b(c® + a®) = c(a® + b?) gives ac® + a* = 2ca®. This implies that
a(a — ¢)(a? — ac — ¢®) = 0. Therefore a? — ac — ¢ = 0. Putting a/c = z, we get the quadratic
equation z2 — 2 — 1 = 0. Hence z = (1 + v/5)/2. Thus we get

1 )
a=>b= ( +2\/_) ¢, c arbitrary positive real number.

Similarly, we get other two cases:

2

1 5

b=c= ( +2\/_) a, a arbitrary positive real number;
1 5

c=a= ( + \/_> b, b arbitrary positive real number.

And a = b = c is the fourth possibility.

Consider (I1): a(a® + b3) = b(b3 + ¢®) = ¢(c® + a3). Suppose a, b, c are mutually distinct. We may
assume a = max{a,b,c}. Hence a > b and a > c. Using a > b, we get from the first relation that
a® 4+ b3 < b3 4 3. Therefore a® < ¢ forcing a < c. This contradicts a > ¢. We conclude that a, b, c
cannot be mutually distinct. This means some two must be equal. If a = b, the equality of the first
two expressions give a +b% = b3 + 3 sehthalag Eue kSimilarly, we can show that b = ¢ implies b = a
and ¢ = a gives ¢ = b.
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Alternate for (II) by a contestant: We can write

a® b3 3
- - — J— _|_ a2’
c c
B a
R + R
a a

c? n a’

b b
Adding, we get

ad b A

—+—+—=d"+ b+
c a b

Using C-S inequality, we have

(a® + 0> +32)? = (%Jﬁc+g@+\/—;§@>

3 3 3
(a_+b_+c_> (ac + ba + cb)
c a

IN

b
= (a® 4 b* + c*)(ab + bc + ca).

Thus we obtain
a? + b2 + % < ab + be + ca.

However this implies (a — )2 + (b — ¢)? + (¢ — a)? < 0 and hence a = b = c.

khanday@uok.edu.in 24



3. Let N denote the set of all natural numbers. Define a function 7' : N — N by T'(2k) = k and

T(2k + 1) = 2k + 2. We write T?(n) = T(T(n)) and in general T*(n) = T*~Y(T(n)) for any k > 1.
(i) Show that for each n € N, there exists k such that 7%(n) = 1.

(i) For k € N, let ¢ denote the number of elements in the set {n : T%(n) = 1}. Prove that
Ckt2 = Ckt1 + Cg, for k > 1.

Solution:

(i) For n =1, we have T'(1) = 2 and T?(1) = T(2) = 1. Hence we may assume that n > 1.
Suppose n > 1 is even. Then T'(n) = n/2. We observe that (n/2) <n —1 for n > 1.

Suppose n > 1 is odd so that n > 3. Then T'(n) = n+ 1 and T?(n) = (n +1)/2. Again we see that
(n+1)/2<(n—1) for n > 3.

Thus we see that in at most 2(n — 1) steps T sends n to 1. Hence k < 2(n —1). (Here 2(n — 1) is
only a bound. In reality, less number of steps will do.)

(ii) We show that ¢, = f,+1, where f, is the n-th Fibonacci number.

Let n € N and let k € N be such that T%(n) = 1. Here n can be odd or even. If n is even, it can
be either of the form 4d + 2 or of the form 4d.

If n is odd, then 1 = T%(n) = T*~1(n+1). (Observe that k > 1; otherwise we get n+ 1 = 1 which
is impossible since n € N.) Here n + 1 is even.

If n = 4d + 2, then again 1 = T%(4d + 2) = T*~1(2d + 1). Here 2d + 1 = n/2 is odd.
Thus each solution of T%~1(m) = 1 produces exactly one solution of T%(n) = 1 and n is either odd

or of the form 4d + 2.

If n = 4d, we see that 1 = T%(4d) = T* 1(2d) = T* 2(d). This shows that each solution of
T*=2(m) = 1 produces exactly one solution of T%(n) = 1 of the form 4d.

Thus the number of solutions of T%(n) = 1 is equal to the number of solutions of T%~!(m) = 1 and
the number of solutions of 7%~2(l) = 1 for k > 2. This shows that ¢y = cx_1 + cx_o for k > 2. We
also observe that 2 is the only number which goes to 1 in one step and 4 is the only number which
goes to 1 in two steps. Hence ¢; = 1 and ¢3S 3@ 9%i§Br'6ves that ¢, = fni1 for all n € N.
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Let n be a natural number. Prove that

2+ Bl e

1 2 3 n

is even. (Here [x] denotes the largest integer smaller than or equal to z.)

Solution. Let f(n) denote the given equation. Then f(1) = 2 which is even. Now suppose that f(n) is even

for some n > 1. Then
n+1 n+1 n+1 n+1
1) = : 1
f(n+1) [1]+[2]+[3]+ [n+1]+[\/n+}

(B[] 2] [+ AT+ o),

1 2 3 n
where o(n + 1) denotes the number of positive divisors of n + 1. This follows from [%] = [2] + 1 if k
divides n+ 1, and [%f!] = [%] otherwise. Note that [v/n + 1] = [\/n] unless n + 1 is a square, in which case

[Vn+1] = [y/n] + 1. On the other hand o(n + 1) is odd if and only if n + 1 is a square. Therefore it follows
that f(n+ 1) = f(n) + 2l for some integer [. This proves that f(n+ 1) is even.

Thus it follows by induction that f(n) is even for all natural number n.

khanday@uok.edu.in 26



Problem 3. Let a,b,c,d be positive integers such that a > b > ¢ > d. Prove that the equation
4 3

zt — a3 — ba? — cx — d = 0 has no integer solution.

Solution. Suppose that m is an integer root of 2* — ax® — ba? —cx —d = 0. As d # 0, we have
m # 0. Suppose now that m > 0. Then m* — am3 = bm? + em + d > 0 and hence m > a > d. On
the other hand d = m(m? — am? — bm — ¢) and hence m divides d, so m < d, a contradiction. If
m < 0, then writing n = —m > 0 we have n* 4+ an3 —bn?+cn—d = n* +n%(an —b) + (en —d) > 0,
a contradiction. This proves that the given polynomial has no integer roots. []

Problem 4. Let n be a positive integer. Call a nonempty subset S of {1,2,...,n} good if the
arithmetic mean of the elements of S is also an integer. Further let t,, denote the number of good
subsets of {1,2,...,n}. Prove that t, and n are both odd or both even.

Solution. We show that 7;,, —n is even. Note that the subsets {1},{2},--- ,{n} are good. Among
the other good subsets, let A be the collection of subsets with an integer average which belongs to
the subset, and let B be the collection of subsets with an integer average which is not a member
of the subset. Then there is a bijection between A and B, because removing the average takes a
member of A to a member of B; and including the average in a member of B takes it to its inverse.

So T, —n = |A| + |B]| is even. O

Alternate solution. Let S = {1,2,...,n}. For a subset A of S, let A = {n +1—ala € A}.
We call a subset A symmetric if A = A. Note that the arithmetic mean of a symmetric subset is
(n+1)/2. Therefore, if n is even, then there are no symmetric good subsets, while if n is odd then
every symmetric subset is good.

If A is a proper good subset of S, then so is A. Therefore, all the good subsets that are not
symmetric can be paired. If n is even then this proves that t, is even. If n is odd, we have to
show that there are odd number of symmetric subsets. For this, we note that a symmetric subset
contains the element (n + 1)/2 if and only if it has odd number of elements. Therefore, for any
natural number k, the number of symmetric subsets of size 2k equals the number of symmetric
subsets of size 2k + 1. The result now follows since there is exactly one symmetric subset with only

one element. O
khanday@uok.edu.in
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Problem 3. Let N denote the set of all positive integers. Find all real numbers ¢ for which
there exists a function f : N — N satisfying:

(@) for any z,a € N, the quantity f"”“—f() is an integer if and only if a = 1;

(b) for all z € N, we have |f(z) — cx| < 2023.

Solution 1. We claim that the only possible values of ¢ are k + ; for some non-negative
integer k. The fact that these values are possible is seen from the function f(z) =
[(k+3)z] +1=kz+ |%]| + 1. Indeed, if you have any z,a € N, then

e o 52| -o-4 (22 1)

This is clearly an integer for « = 1. But for a« > 2, we have
THa| |z K +2 RE 1
2 2|~ 2 2

T+ a x
S|

and if « = 2k + 1 for k > 1, then
r+a x T+ 2k+2 x
MJ M_{ : J M F4l<2kt1-a

khanday@uok.edu.in

If a = 2k, then
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So in either case, the quantity | 2£%| — | %] is strictly between 0 and a, and thus cannot be

divisible by a. Thus condition (a) holds condition (b) is obviously true.

Now let us show these are the only possible values, under the weaker assumption that
there exists some d € N so that |f(z) — cx| < d. Itis clear that ¢ > 0: if —d < f(z) —cx < d
and ¢ < 0, then for large = the range [cz — d, cx + d] consists only of negative numbers and
cannot contain f(z).

Now we claim that ¢ 2 . Indeed, suppose that 0 < ¢ < 5, and that d > 0 is such that

|f(z) — cz| < d. Pick N > {24 so that 2(cN + d) < N. Then the N values {f(1),...,f(N)}

must be all be in the range {1,...,cN +d}, and by pigeonhole principle, some three values
f@), f(4), f(k) must be equal. Some two of i,j,k are not consecutive: suppose WLOG
i > 7+ 1. Then Lj(]) = 0, which contradicts condition (a) for x = j and a =i — j.

Now for the general case, suppose ¢ = k+ A\, where k € Z and X € [0,1). Let d € N be
such that —d < f(z) — cx < d. Consider the functions

g1(z) = f(x) —kx+d+1,g2(x) =x — f(x) + kz +d+ 1.
Note that

g(z)>cx—d—kr+d+1= x+1>1,
gx) >z —(cx+d)+kr+d+1=(1-Nz+1>1

so that these are also functions from N to N. They also satisfy condition (a) for f:

p@+a)—gi(@) _flat+a)—k(zt+a)+d—fle)+khkr—d _ flata)-flx) ,

a a a

is an integer if and only if w

argument holds for g.

Now note that ¢;(z) — Az = f(z) — cx + d + 1 is bounded, and so is g3(z) — (1 — Az =
cx — f(z) +d + 1. So they satisfy the weaker form of condition (b) as well. Thus applying
the reasoning in the second paragraph, we see that A > 1 and 1— X > 3. This forces A = 3,
which finishes our proof. khanday@uok.edu.in O

is, which happens if and only if ¢ = 1. A similar
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Solution 2. We will show that for any such ¢, we have ¢ > 0 and {c} = 1. Also 2023 can
be replaced by any fixed d > 1 in condition (b) which we assume now.
Clearly ¢ > 0 else for ¢ < 0 and = > %, cx—d < f(x) < cx+d < 0 which is a contradiction.

Suppose {c} # 1. Put r = [¢] and A = min({c},1 — {c}) and define

) = flz) —rx if {c} <
9() {:1:+Ta?f(a:) if {c} >

NI N~

so that |f(z) — cx| = |g(x) — Ax| and g(x) € Z for all x € N. Here 0 < )\ < Take

N > 2(AN + 2d). Then from |g(z) — \x| = | f(z) — cx| < d, we get

N[

—d<In—-d<gn)<In+d<AN+d

for all 1 < n < N. That is N integers g(n),1 < n < N can take at most AN + 2d values.
Since N > 2(AN + 2d), by pigeonhole principle, there are 3 positive integers i < j < k such
that ¢g(i) = g(j) = g(k). Then k —i > 2 and

g(k)+rk —(g(i) +7ri) =7r(k —1) if {c} <

fh) = 10) = {(1 + )k —g(k) — (1+7)i— g(i)) = (L +7)(k—i) if {c} >

N N[~

so that W is an integer. This contradicts the condition (a). Also for each ¢ = k + 3,
the function f(z) = |(k + 5)z| satisfy the conditions (a) and (b). O

khanday@uok.edu.in
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Solution 3. We give a different proof that {c} = 1/2. Let us first prove a claim:

Claim. For any k > 1 and any z, f(z + 2¥) — f(z) is divisible by 2*~! but not 2.

Proof. We prove this via induction on k. For £ = 1, the claim is trivial. Now assume the
statement is true for some k, and note that f(z + 2¥) — f(z) = 2*~'y; and f(z + 2% + 2F) —
f(z + 2F) = 2k—1y, for some odd integers y1,y.. Adding these, we see that

fla+2800) — fla) = 257y + y2)

which is divisible by 2* because y; + y» is even. The fact that this is not divisible by 2¢+!
follows from the condition on f. O

Now using this claim, we see that for any k > 1, f(1+2%) = f(1) +2*~1(2yx + 1) for some
integer y,, which means

fA4+28) —c(1+2%) = f(1) —c+2F (yk+;—c>.

Thus 2*(yx + 3 — ¢) is bounded. But y; + 3 — ¢ has the same fractional part as $ — ¢, so if

2
this quantity is never zero, its absolute value must be at least m = min ({1 —c},{c—3})
and thus we have

ok > 2km,

1
yk+§—c

contradicting boundedness. Thus we must have y; + % — ¢ = 0 for some k. Since y; is an
integer, so that {c} = 3. O

A more rigorous treatment is given below.

Obtain

F1+ 25 = (1429 = () — e~ 2* (et 5~ c)

as before. We obtain that 2*|y;, + 2 — c¢| < M for some M > 0 by condition (b). Suppose that
{c} # 3. Writing yx, + 2 —c = my + § with my, € Z and 0 < 6 < 1, we have 0 < § < 1. Then
there exists ¢ > 1 such that min(d,1 — §) > 2. Hence

§> o5 if my >0
—mk—ézl—(Szi if mp <O

1
lyx + 5 —c| = |my + 0] >
2 5

khanday@uok.edu.in )

implying M > 2*|y, + 5 — ¢| > 2*~* which is a contradiction for large k. Thus {c} = 3
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Problem 2. Find all pairs of integers (a,b) so that each of the two cubic polynomials
2> +ax+band z° + br +a

has all the roots to be integers.

Solution. The only such pair is (0,0), which clearly works. To prove this is the only one,
let us prove an auxiliary result first.

Lemma If o, 3,7 are reals so that o« + 5+~ =0 and |«|,|8], |y| > 2, then

[aB + By +yal <|apfyl.
Proof. Some two of these reals have the same sign; WLOG, suppose af > 0. Then v =
—(a+ ), so by substituting this,
@B + By +yal = |a® + 52 + afl, lafy| = |ab(a+ B)|.
So we simply need to show |af(a + 3)| > |a? 4+ 5% + af|. Since |a| > 2 and |3| > 2, we have
[af(a+ B)| =lal|fla+ B)| = 2|6(a + B,
laf(a+ B)| =|Bllala + B)| = 2|a(a + B)|.

Adding these and using triangle inequality,

2laB(a+ B)| = 2[B(a+ B)| + 2lala+ B)| = 2[B(a + B) + ala + B)|
> 2(a? + 8% + 2a8) > 2(a? + B2 + af)
=2|a® + % + af|.

2
Here we have used the fact that o + 82 +2a8 = (a+ 3)? and o? + 3% + a3 = (a + g) + #

are both nonnegative. This proves our claim. O

For our main problem, suppose thEhgo ts of |z3 +ax+b are the integers r1, 2,73 and the

. nda ok.edu.in, .
roots of 22 + bz + a are the integers s1, s, 33Y y\?leta s relations, we have



But x1 + y1 + 21 is odd, and hence non-zero, so this cannot happen.

Thus we can assume WLOG that v»(z) > v»(y). Then the third root is —(z+y). Similarly,
the three roots of 22 + bz + a can be written as p, ¢, —(p + q) where v5(p) > 1»2(q). By Vieta’s
relations,

vy —z(z+y) —y@+y) = —(° + 2y +y*) = a=pa(p +q)
pe—p(p+q)—ap+q)=—(p* +pg+¢*) =b=zy(z +y)

Suppose = = 2¥z; and y = 2%, for odd z,,y; and k > ¢; in particular k¥ > 0. Then

ry(r +y) = 2Fxy - 20y - (282 + 2%1) = 28Ty (2P + Y1)

Here z1y, (2F*

Also,

x1 + 1) is clearly odd, so vo(zy(x + y)) = k + 24.

x + Ty + y — 22]€ _|_ 2]?3,;1 2£y + 22£y1 — 22£ (22]{3 2£ZC1 + 2k—€x1y1 + y%) .

Again, all the terms in the second factor are even except y?, so the entire factor is odd.
This means vy (22 + xy + y?) = 2{. Therefore

va(zy(z +y)) > va(2® + zy + 7).

Similarly, one may show
va(pa(p + q)) > v2(p® + pg + ¢%).
But then

va(b) = va(xy(z + ) > va(2? + 2y + y*) = 12(pe(p + @) > 12(p* + pg+ ¢*) = va(b).

Here we have used the fact that v (n )<han’é2a (@ I<feo - any integer n. But this is a contradic-
tion, proving our claim. !



ri+ro+r3=0=s51+ 59+ 83
r1ro 4+ 1rors + r3ry = a = —8515953
$159 + 283 + 8351 = b= —riror3

If all six of these roots had an absolute value of at least 2, by our lemma, we would have
‘b’ = ’8182 + S983 + 8381‘ < ‘818283‘ = |T’17‘2 + rors + 7“37”1| < |T’17’27’3’ = ‘b‘,
which is absurd. Thus at least one of them is in the set {0, 1, —1}; WLOG, suppose it’s ;.

1. If r; = 0, then ro = —r3, so b = 0. Then the roots of 2 + bz + a = 2 + a are precisely
the cube roots of —a, and these are all real only for a = 0. Thus (a,b) = (0,0), which
is a solution.

2. If ry =41, then £1+a+b =0, so ¢ and b can’t both be even. If a« = —s15953 is odd,
then s1, 59,53 are all odd, so s; + s2 + s3 cannot be zero. Similarly, if b is odd, we get
a contradiction.

The proof is now complete. W

Alternate Solution. The only such pair is (0,0), which clearly works. Let us prove this
is the only one. In what follows, we use v5(n) to denote the largest integer k so that 2*|n
for any non-zero n € Z.

If one of the cubics has 0 as a root, say the first one, then 0° +0-a+b =0, so b = 0.
Then the roots of z° + bz + a = 2° + a are precisely the cube roots of —a, and these are all
real only for a = 0. Thus (a,b) = (0,0).

So suppose none of the roots are zero. Take the cubic 23 +ax +b, and suppose its roots
are z,y, 2. We cannot have vy(z) = 15(y) = 15(2); indeed, if we had z = 2¥z;,y = 2y, 2 =
282 for odd z1,y1, 21, then

0=2+yat2532 @ 2t 21)
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