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Abstract

The project dissertation comprises four chapters that focuses on basic mathematical

modelling of heat and blood transport in human eye. The first chapter provides an intro-

ductory overview of the subject and anatomy of human eye.

The second chapter explains the heat transfer mechanism in human eye along with

the background of the topic.

In the third chapter, we have gone through the one dimentional heat distribution in

human eye using variational finite element method.

In the last chapter, we have reviewed the paper entitled "Thermal behaviour of hu-

man eye in relation with change in bloood perfusion, porosity, evaporation and ambi-

ent temperature" published in Journal of Thermal Biology, 62(2016), 138-142 by Aasma

Rafiq and M.A.Khanday. In the last section of this chapter, we have also discussed how

to model blood transport in human eye.
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Chapter 1

General introduction

Section 1.1

Introduction to Mathematical biology

Mathematical biology is an interdisciplinary field that uses mathematical models, tech-

niques, and tools to study and understand biological phenomena, processes, and systems.

It seeks to describe, analyze, and predict various biological phenomena and their un-

derlying mechanisms using mathematical equations, computer simulations, and quan-

titative methods. Mathematical biology bridges the gap between biology and mathe-

matics. It draws upon concepts from various mathematical disciplines such as calcu-

lus, differential equations, probability theory, and statistics to address complex biological

questions[48]. Mathematical biologists create mathematical models to represent biolog-

ical systems. Models can describe the behavior of individual organisms, populations,

ecosystems, and even cellular processes. Mathematical biology has a wide range of ap-

plications, including epidemiology (the study of disease spread)[1], population dynam-

ics (e.g., predator-prey interactions)[2], ecology (e.g., species interactions and ecosystem

modelling), genetics (e.g., gene expression and inheritance), and physiology (e.g., mod-

elling physiological processes). In general , mathematical biology provides a powerful
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1.2 Brief Concept of Human Physiology

framework for gaining insights into biological systems, making predictions, and advanc-

ing our understanding of the living world by harnessing the power of mathematics and

computational techniques. It is a dynamic field at the intersection of mathematics and

biology, contributing to advancements in various areas of science and medicine.

Section 1.2

Brief Concept of Human Physiology

Human physiology is the branch of biology that focuses on understanding how the human

body functions[4]. It involves the study of various systems, organs, and processes that

work together to maintain the body’s internal balance and allow it to carry out essential

functions. It includes the study of nervous, endocrine, cardiovascular, respiratory, and

urinary systems as well as cellular and exercise physiology. Understanding human physi-

ology is essential for diagnosing and treating health conditions and promoting wellbeing.

One of the central principles of human physiology is homeostasis. The concept of home-

ostasis was given by French Scientist Claude Bernard in 1865[5]. The word homeostasis

has been derived from two Greek words homoios meaning same or resembling and stasis

means posture or to stand[6]. This concept refers to the body’s ability to maintain a stable

and balanced internal environment despite external changes.

Section 1.3

Anatomy of Human Eye

The eye is a complex optical system. A relatively small organ in the human body, the eye

is a passageway to understanding and emotion. Not only does the eye allows us to see

and interpret the shapes, colors, and dimensions of objects in the world by processing the
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1.3 Anatomy of Human Eye

light they reflect or emit, but it also enables us to see and interpret unspoken words and

unexplainable environments. It acts as a transducer as it changes light rays into electrical

signals and transmits them to the brain, which interprets these electrical signals as visual

images. It is protected by the cone-shaped cavity in the skull called the orbit or socket

which protects them against any injury[4]. The eye is a spherical organ which measures

approximately one inch or 2.5cm in diameter. It is composed of three main layers:

(i) Fibrous layer (ii) Vascular layer (iii) Retina.

In addition to these layers, there are other parts like lens, aqueous humour and vitreous

humour as shown in figure(1.1) . Each of these layers have different function to perform.

The fibrous layer of eye tissue allows light to enter into the eye, nourishes the eye and

controls the amount of light to enter into the eye. The vascular layer helps in protecting

the different portions of eye. The retina is the sensitive portion of eye which converts the

image into electrical impulse to be interpreted by brain.The detailed description of differ-

ent layers of eye is given below:

1.3.1 Fibrous Layer

Fibrous layer is the thick and tough layer which protects the eyeball. It also helps in

maintaining the shape and form of eyeball. This layer has two distinct and unequal re-

gions viz.,

(a) sclera (b) cornea.

(a) Sclera: It forms the posterior five-sixth of the fibrous layer. It is commonly known as

"the outer wall of the eye". It is tough, opaque and bluish-white. It is largely hidden in

the orbit. The sclera serves to support and protects the inner parts of the eye. It contains

about 68% of water[7].

(b) Cornea: It forms the anterior one-sixth of the fibrous layer. The cornea is the transpar-

ent, dome-shaped window covering the front of the eye. This contains 78% of water[10].

An adult cornea has a front surface of radius about 8mm. The cornea helps in the image

formation by refracting light entering into the eye. The cornea is a non-vascular structure
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1.3 Anatomy of Human Eye

as the capillaries that supply nutrients to the cornea terminate in loops at its circumfer-

ence.

1.3.2 Vascular Layer

The vascular layer is the middle layer of the eye tissue which contains much of the eye’s

pigment. The vascular layer or uvea consists of three regions.

(a) Choroid

(b) Iris

(c) Ciliary body

(a) Choroid: The choroid is also known as the choroidea or choroid coat and it lies in

the region between the retina and sclera. This section of vascular layer is dark brown in

colour containing blood vessels and gives nourishment to our eyes.

(b) Iris: The iris is that part of the vascular layer of the eye tissue which determines a

person’s eye colour (blue, green, brown). This is a pigmented tissue which lies behind

the cornea and infront of the natural lens. The iris acts as a camera shutter which controls

the amount of light entering the eye. There is a small opening in the center of iris called

pupil. The pupil is small in bright light and large in dim light. The size of pupil usually

varies with age.

(c) Ciliary body: The ciliary body is located behind the iris and acts as an instrument for

controlling the focusing of the eye and the production of aqueous fluid. The ciliary body

is a well vascularized tissue with high rate of blood flow.

1.3.3 Retina

The retina is a multi-layered sensory tissue that lies at the back of eye and contains mil-

lions of photo-receptors that capture light rays and convert them into the electrical im-

pulses which travel to brain through optic nerve where they are turned into images. Retina

is separated into two layers - the outer layer or pigmented layer which absorbs light as

well as removes damaged and dead photoreceptor cells. This layer also helps to recycle
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1.3 Anatomy of Human Eye

the vitamin A product that is very essential for eye’s nourishment. The second layer is

the inner layer or the neural layer which contains the photo-receptors and other cells that

allow a person to see.

There are mainly two types of shapes for the photo-receptors in the retina namely

rods and cones. There are nearly about 6 million cones which are contained in macula,

that portion of retina which is responsible for vision. Cones are used for day vision and

in order to function these needs a lot of light. The rod type of photo-receptors are about

125 million in number, they are responsible for night vision and lack of them causes night

blindness.

1.3.4 Lens

Lens is located directly behind the iris which helps to focus the rays of light onto the

retina. The softer material called cortex surrounds the innermost part of the lens (nucleus).

The lens is encased in a capsule like bag and suspended within the eye by tiny wires called

Zonules[9]. There is about 65 % of water in lens and it decreases with ageing[8]. The

lens is separated from aqueous chamber by capsule posterior and the epithelium capsule

anterior, so any damage to the capsule may lead to the occurrence of the cataracts.

1.3.5 Aqueous humour

The watery fluid that is continually secreted by the ciliary body fill the space between the

cornea and iris. This fluid nourishes the cornea and the lens, and also gives the front of

eye its shape and form.

1.3.6 Vitreous humour

The chamber lying behind lens and infront of the retina is filled with a gelatinous fluid

called the vitreous humour. It is composed of water and comprises about 2/3 of the eye’s

volume. The main function of vitreous humour is to retain the eye to its actual shape

when compressed.
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1.3 Anatomy of Human Eye

Figure 1.1: Schematic diagram of multilayered human eye

(https://en.m.wikipedia.org/wiki/Intravitreal administration)
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Chapter 2

Heat Transfer Mechanism in Human Eye

Section 2.1

Introduction

Heat transfer is that science which seeks to predict the energy transfer that may take place

between material bodies as a result of a temperature difference. The science of heat trans-

fer seeks not only to explain how heat energy may be transformed, but also to predict the

rate at which the exchange will take place under certain specified conditions.

Heat transfer describes the exchange of thermal energy between physical systems

depending on the temperature and pressure by dissipating heat. Heat transfer is the ex-

change of kinetic energy of particles through the boundary between two systems which

are at different temperatures from each other or from their surroundings[28]. Heat transfer

always occurs from a region of higher temperature to another region of lower tempera-

ture. Heat transfer changes the internal energy of both bodies involved according to the

first law of thermodynamics.

The principles of heat transfer in engineering systems can be applied to the human

body in order to determine how the body transfers heat. Heat is produced in the body by

continuous metabolism of nutrients which provides energy for the systems of the body.
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2.1 Introduction

The human body must maintain a consistent internal temperature in order to maintain

healthy body functions. Therefore, excess heat must be dissipated from the body to avoid

overheating. When a person engages in elevated levels of physical activity, the body re-

quires additional fuel which increases the metabolic rate and the rate of heat production.

The body temperature of human beings remains relatively constant, despite consid-

erable change in the external conditions[29]. In order to maintain a constant core temper-

ature, the body must balance the amount of heat it produces and absorbs with the amount

it loses; this is thermoregulation[30]. Thermoregulation maintains the core temperature

at a constant set point, average 37°C, despite fluctuations in heat absorption, production

and loss.

The body temperature is determined by the balance between heat produced and

heat lost. Heat is lost or gained by radiation, evaporation, conduction and convection.

Heat gain occurs due to internal metabolism and blood flow throughout the body. The

metabolic heat is produced in the body due to breakdown, synthesis and utilization of

food.

Besides conduction, convection, radiation and evaporation, there are many factors

that directly affect heat transfer mechanism in human eye. One of the most important

factor is blinking of eyelids. Although there is no skin layer that covers eye permanently

as internal body organs, there are eyelids which covers eye frequently during blinking. In

extreme environmental conditions like hot/cold temperatures, high wind flow, accidental

exposure to UV/IR rays etc., eyelid blinking increases or covers eye surface completely

for a while. With the eyelid closed, the temperature of the anterior eye is increased about

2°C by blood flow in the eyelid[24]. With the increased eyelid blinking, it picks/deposits

heat energy from/to cornea to maintain constant eye temperature.

Another important factor is tearing. With each blink, a warm tear secreted at body

core temperature is layered across the cornea. In extreme conditions this tear layer heats

up or cool down the eye surface temperature. Mapstone indicated that a rapid increase in

corneal temperature (i.e. in a matter of second) can result only from tearing since other
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2.1 Introduction

factors need some time to act[26]. In cold outdoor conditions, eye may require instant

heat (cold weather in combination with wind) to maintain constant temperature and this

instant heating is possible via tearing. In hot outdoor conditions, eye surface evaporates

water to cool the cornea. The cooling rate depends on how fast the water evaporates from

the surface. Moist surface evaporates more water than dry surface. Tearing continuously

moistens the cornea during blinking. This helps to evaporate more water from eye surface

and hence cooling the cornea.

Blood perfusion also plays an important role in human eye heat transfer mecha-

nism. As we mentioned in section 1.3, only retina, choroid, iris and ciliary body have

blood flow inside the eye. The continuous chain of retina/choroid, ciliary body and iris

covers vitreous humor, lens and posterior part of aqueous humor. Outside this chain there

is sclera and cornea, the outer cover of eye. The temperature in internal parts (vitreous

humor, lens, posterior aqueous) is maintained by high blood perfusion and metabolism

in these four layers (choroid, iris, retina and ciliary body). The blood perfusion rate in

choroid/iris is the highest among any other tissue in the human body[27]. The metabolic

heat generation rate is the highest in the retina among any other tissue in human body[22].

These statements reveal that retina/choroid/iris/ciliary body are the power sources of eye

and these play an important role in human eye heat transfer.

1.4.1 Conduction

Conduction is heat transfer by means of molecular agitation within the human body

without any motion of the molecules as a whole[41]. Heat conduction occurs as hot and

rapidly moving or vibrating molecules interact with neighboring molecules, transferring

some of their energy (heat) to neighboring molecules. Conduction is the most signifi-

cant means of heat transfer within a solid or between solid objects in thermal contact[23].

Solids are highly conductive and fluids specially gases are less conductive. Approxi-

mately 3% of body heat is lost through conduction. The mathematical model for heat

transfer through conduction is described by Fourier’s law of conduction. When a temper-

ature gradient exists in a body, experiments have shown that there is an energy transfer
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2.1 Introduction

from the high temperature region to low temperature region. We say that energy is trans-

ferred by conduction and that the heat transfer rate per unit area is proportional to the

normal temperature gradient.

Qcond

A
∝

∂T
∂x

(1.1)

When the proportionality constant is inserted,

Qcond =−KA
∂T
∂x

(1.2)

where Qcond is the heat transfer rate and ∂T
∂x is the temperature gradient in the direction of

the heat flow. The positive constant K is called thermal conductivity of the material and

the minus sign is inserted so that the second principle of thermodynamics will be satisfied

i.e. heat must flow downhill (high temperature region to low). Equation (1.2) is called

Fourier’s law of heat conduction.

1.4.2 Convection

Convection is the exchange of body heat with the external environment. If the body

temperature is higher than its external ambient temperature, then heat flows from the body

to the surrounding air causing it to heat up, is replaced by the more dense and cool air

at the peripheral regions of the body. Thus, cool air which moves continuously up to the

body surface gets warmed by body heat and then flows away. This results heat loss from

the body surface. Therefore, the transfer of heat to a moving fluid is termed as convection.

The Newton’s law of cooling provides a physical model of convection heat transfer.

According to Newton’s law of cooling, heat flux due to convection is directly proportional

to the difference in temperature between the surface and the fluid.

That is

Qconv

A
∝ (Ts −Tf ) (1.3)
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2.1 Introduction

where Qconv is heat transfer rate due to convection, Ts is surface temperature and Tf is the

fluid temperature far away from the surface.

Introducing a proportionality constant, we obtain

Qconv = hA(Ts −Tf ) (1.4)

The constant of proportionality h is called heat transfer coefficient. Equation (1.4) is the

rate equation due to convection

1.4.3 Radiation

Radiation is another means of heat exchange between human body and surround-

ings through infrared rays. All objects including human body that are not at the absolute

temperature radiate heat energy from such rays. Human body radiate heat rays in all di-

rections. However, walls and the other objects radiate heat rays towards the body surface.

In human eye, the outer surface is transparent cornea. The thermal radiation from

transparent body surface is negligible. However, inside cornea there is a highly pigmented

tissue layer, iris. Iris is a colorful organ (blue or black or brown) and having high blood

perfusion. Its surface temperature is supposed to be at 37◦C. Because of highly pig-

mented tissue and of nearly black color, it exerts thermal radiation, which passes through

the cornea to the environment. Thus, thermal radiation exerts from cornea and heat loss

occurs via radiation.

Thermodynamic consideration shows that an ideal thermal radiation, or black body,

will emit energy at the rate proportional to the fourth power of the absolute temperature

of the body and its surface area. Thus

Qblack body = σAT 4 (1.5)

where σ is proportionality constant and is called the Stefan - Boltzmann constant with

the value 5.67×10−8W/m2K4. Equation (1.5) is called Stefan-Boltzmann law of thermal
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2.2 Mathematical Techniques

radiation and it applies only to black bodies.

1.4.4 Evaporation

Evaporation is the process whereby a liquid can be transformed into vapor. This

implies a phase change, or change of state, and it is an example of a latent heat change.

In latent heat change, the evaporative energy loss depends on the mass of the liquid and

the energy required to vaporize the liquid. The energy which changes a gram of a liquid

into the gaseous state at the boiling point is called the latent heat of vaporization (L). The

evaporation of 1 gram of sweat removes 580 kcal or 2426 kJ of heat energy. If Qe denotes

the rate of heat exchange from the body due to evaporation, A denotes the area and H

denotes the rate of sweat evaporation,

then

Qe = ALH

= AE (1.6)

where

E = LH.

Section 2.2

Mathematical Techniques

A number of problems in science and technology can be addressed by formulating their

suitable models with the help of differential equations. The analytical methods of solving

differential equations are applicable only to a limited class of equations. These methods

produce good results in many boundary value problems where the analytical methods and

exact solutions are not available. These methods are of even greater importance when we

realise the availability of computing machines for the simulation of results by means of
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2.2 Mathematical Techniques

different softwares like MATLAB, MAPLE, MATHEMATICA etc., which considerably

reduce the numerical work.

2.2.1 FINITE DIFFERENCE METHOD

The simple one dimensional heat equation is

∂T
∂ t

= α
∂ 2T
∂x2 ; 0 ≤ x ≤ L and t ≥ 0 (2.7)

where, T = T (x, t) is a dependent variable and α is constant.

Let the boundary conditions and the initial conditions of equation (2.7) respectively

be the following

T (0, t) = T0 and T (L, t) = TL (2.8)

T (x,0) = f0(x). (2.9)

One way to numerically solve this equation is to approximate all the derivatives

by finite differences. We form the mesh by partitioning the total length by points

x0,x1,x2, . . . ,xn and the time interval as to, t1, t2, . . . , tm. We assume a uniform partition

both in space and in time, so that difference between two consecutive space points will be

△x and between the two consecutive time points will be △t. The points are denoted in

the short form as

T (xi, t j) = Ti, j

2.2.1.1 Forward Time Centered Space

Replacing the time derivative in equation (2.7) with the forward difference

13



2.2 Mathematical Techniques

∂T
∂ t

∣∣∣
Tj+1,xi

=
Ti, j+1 −Ti, j

△t

and
∂ 2T
∂x2 by its central difference approximations.

i.e.

∂ 2T
∂x2 =

Ti−1, j −2Ti, j +Ti+1, j

△x2

Hence equation (2.7) becomes

Ti, j+1 −Ti, j

△t
= α

(
Ti−1, j −2Ti, j +Ti+1, j

△x2

)
(2.10)

Solving for Ti, j+1 in terms of other values of T, equation (2.10) becomes

Ti, j+1 = Ti, j +α
△t
△x2 (Ti−1, j −2Ti, j +Ti+1, j)

Ti, j+1 = rTi+1, j +(1−2r)Ti, j + rTi−1, j (2.11)

where, r = △t
△x2

Equation (2.11) is called Forward Time Centered Space or FTCS approximation of

heat equation. Equation (2.11) can be expressed in matrix form as

Tj+1 = ATj
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2.2 Mathematical Techniques

Where

A =



1 0 0 0 ... 0 0

r 1−2r r 0 ... 0 0

0 r 1−2r r ... 0 0

. . . . ... 0 0

. . . . ... 0 0

. . . . ... 0 0

. . . 0 r 1−2r r

0 0 0 0 ... 0 1



(2.12)

is a tridiagonal matrix, Tj and Tj+1 are the vectors of T values respectively at the time

steps j and ( j + 1). The first and the last rows of A are adjusted so that the boundary

values are not changed.

Equation (2.11) is used to estimate the values of the solution T(x,t) at the points on the

( j+1)th time line using only values from the jth time line. This kind of numerical proce-

dure is called explicit finite difference method.

2.2.1.2 Backward Time Centered Space

The time derivative in equation (2.7) can be replaced with the back- ward difference

∂T
∂ t

∣∣∣
Tj+1,xi

=
Ti, j −Ti, j−1

△t

and the second order partial derivative by its central difference approximations.

Hence equation (2.7) becomes

Ti, j −Ti, j−1

∆t
= α

(
Ti−1, j −2Ti, j +Ti+1, j

∆x2

)
(2.13)

The three terms in equation (2.13) refer to T at the jth level and only one term refers to T

at ( j−1)th level. If T is known at the mesh points on ( j−1)th level, then the values at

the jth level can be computed from equation (2.13) by solving the system of equations.
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Rewriting (2.13) in the following form

Ti, j −Ti, j−1 = r(Ti+1, j −2Ti, j +Ti−1, j)

−rTi−1, j +(1+2r)Ti, j − rTi+1, j = Ti, j−1, (1 ≤ i ≤ n−1) (2.14)

Equation (2.14) is called Backward Time Centered Space or BTCS approximation of

heat equation. Equation (2.14) can be expressed in matrix form as

BTj = Tj−1

Where,

B =



1 0 0 0 ... 0 0

−r 1+2r −r 0 ... 0 0

0 −r 1+2r −r ... 0 0

. . . . ... 0 0

. . . . ... 0 0

. . . . ... 0 0

. . . 0 −r 1+2r −r

0 0 0 0 ... 0 1



(2.15)

where Tj and Tj−1 are the vectors at jth and ( j− 1)th time level respectively. This kind

of numerical procedure is called implicit finite difference method. BTCS scheme requires

solving a system of equations at each time step. The computational effort per time step

for BTCS is much greater than the computational effort per time step of FTCS.

2.2.2 CRANK-NICHOLSON METHOD

The algorithm introduced by John Crank and Phyllis Nicholson in 1947 is used

mostly for solving the heat equation. In this algorithm, we replace the second order

partial derivative in heat equation by an average of two central difference quotients. Hence

equation (2.7) can be approximated as

Ti, j+1 −Ti, j

△t
=

α

2

[
Ti+1, j −2Ti, j +Ti−1, j

△x2 +
Ti+1, j+1 −2Ti, j+1 +Ti−1, j+1

△x2

]
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or, it can be written as

Ti, j+1 −Ti, j =
r
2

[
Ti+1, j −2Ti, j +Ti−1, j +Ti+1, j+1 −2Ti, j+1 +Ti−1, j+1

]
or

−Ti−1, j+1 +βTi, j+1 −Ti+1, j+1 = Ti+1, j − γTi, j +Ti−1, j (2.16)

f or j = 0,1,2, . . . ,m−1 and i = 1,2,. . . ,n-1 where β = 2(1
r +1) and γ = 2(1− 1

r )

For each choice of j, the difference equation (2.16) for i = 1,2, . . . ,n− 1 gives (n− 1)

equations in (n− 1) unknowns Ti, j+1. Due to the boundary conditions the values Ti, j+1

are known for i = 0 and i = n. Equation (2.16) can be used to determine the values of T

on the ( j+1)st time line. In matrix form equation (2.16) can be expressed as

AX = B.

Where A is a tridigonal matrix.

i.e, A =



β −1 0 0 ... 0 0

−1 β −1 0 ... 0 0

. . . . ... . .

. . . . ... . .

. . . . ... . .

. . . . ... β −1

0 0 0 0 ... −1 β


(2.17)

and B = [b1,b2, . . . ,bn−1] is a column matrix with entries

b1 = T2, j − γT1, j +T0, j +T0, j+1

b2 = T3, j − γT2, j +T1, j

b3 = T4, j − γT3, j +T 2, j
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. . .

. . .

. . .

bn−1 = Tn, j − γTn−1, j +Tn−2, j +Tn, j+1.

2.2.3 FINITE ELEMENT METHOD

The FEM is one of the most popular and advanced mathematical cum numerical

technique for obtaining an approximate solution to the complex boundary value problems

in various engineering and science fields. In the variational finite element method, the

domain of the problem is divided into a finite number of sub-domains called elements

and variational functional is obtained at each of the sub-domain. The approximate solu-

tion for each element is expressed in terms of undetermined nodal values as appropriate

shape functions or interpolating functions. The algebraic equations for the elements are

assembled over the entire region and boundary conditions are suitably incorporated. The

equations are solved for the nodal values and the approximate solution is obtained as

piecewise interpolation function. The various steps involved in the FEM technique are

summarised as :-

Step 1: Definition of the Problem and its Domain

In this step, the characteristics of the problem and its domain are defined. The domain

may be defined physically and geometrically.

Step 2: Discretization of the Domain

The domain is divided into a number of sub-domains called elements. The system is usu-

ally divided into uniform or non-uniform line segments, triangles, rectangles or quadrilat-

erals depending upon the geometry of the domain. The elements are joined to each other

at the limited number of points called nodes. The collection of elements is called the finite

element mesh of the domain. The domain is divided into elements because of two main

reasons-firstly to represent the geometry of the domain and secondly to approximate the
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solution over each element of the mesh in order to better represent the solution over the

entire domain.

Step 3: Derivation of Element Equations

For the given differential equation, a variational formulation is constructed over a typical

element. The derivation of finite element equations involves three steps:

i) Construct the weighted - residual or weak form of the differential equation.

ii) Assume the form of the approximate solution over a typical finite element.

iii) Derive the finite element equations by substituting the approximate solution into

the weighted residual or weak form.

. Step 4: Connectivity of elements

While deriving the element equations, we isolate a particular element from the mesh and

formulate the variational problem and develop its finite element model. To solve the total

problem, we put the elements back into the original positions and the assembly of ele-

ments is carried out by imposing intermediate element continuity conditions. Then the

entire system takes the matrix form.

Step 5: Imposition of the boundary conditions

The system of equations as obtained in Step 4 are modified by using the boundary condi-

tions of the problem.

Step 6: Solution of Equations

After incorporating the boundary conditions, the simultaneous system of equations are

solved by using standard techniques or by using MATLAB software.

2.2.4 VARIATIONAL FINITE ELEMENT METHOD

Variational finite element method is an extension of the finite element method. Like in

FEM, the steps involved in the variational finite element method are summarised below:
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Step 1: Transform differential equation into variational form.

The given differential equation is transformed into variational integral form. From the

Calculus of variations, it follows that the variational integral and the given differential

equation are equivalent as the function that satisfy the differential equation and the bound-

ary conditions also extremize the functional.

Variational FEM is used for finding the solution of the functional

I =
∫ b

a
F(x,T (x),T ′(x))dx (2.18)

subject to the conditions

T (a) = T1 and T (b) = T2 (2.19)

We wish to find the function T (x) that satisfies equation (2.19) and minimizes the func-

tional (2.18). From the Calculus of variations, the necessary condition for T (x) to mini-

mize I(T ) is to satisfy Euler-Lagrange’s equation which is given as:

∂F
∂T

− d
dx

(
∂F
∂T ′

)
= 0

where T ′ = dT
dx .

Step 2: Discretization

The domain is divided into a finite number of elements. The number, shape, size and

configuration of these elements is selected in such a manner that the original structure of

the domain is represented by the mesh of elements as closely as possible. The variational

integral is defined for each element. So, we may write

I(T ) =
n

∑
k=1

Ik (2.20)

where n represents the number of elements of domain under consideration.

Step 3: Selection of the interpolation function

An approximate function is chosen over each element such that it satisfies certain condi-

tions. The polynomial represents the simplest form of the approximating function. If we
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take linear interpolation, then the function T (x) may be approximated over the element

(e) by

T (i) = Ai +Bix, (i = 0,1, . . . ,n)

where Ai =
xi+1Ti − xiTi+1

xi+1 − xi
and Bi =

Ti+1 −Ti

xi+1 − xi

This is also called the shape function.

Step 4: Finding element matrices and equations

The element matrices and equations are obtained by using shape function and performing

the necessary integration or differentiation wherever needed. Integration is performed for

each element and the results are obtained in terms of the nodal values.

Step 5: Assembly of element equations

The element equations are assembled such that the total solution is continuous. Assemble

all the element equations so as to get

I(T ) =
n

∑
k=1

Ik

where Ik represents the element functional.

Step 6: Differentiation

I(T )is differentiated w.r.t. the nodal values and equated to zero to obtain the system of

equations i.e.,
∂ I
∂Tk

= 0, (k = 0,1,2, . . . ,n)

Step 7: Imposition of boundary conditions

Boundary conditions are imposed on the simultaneous system of equations to reduce them

into the condensed form.

Step 8: Solution of equations

The system of equations are solved to determine the unknown nodal values which can be

substituted in the shape function to find the nature of the variable within each element.
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2.3 Bio-heat equation

Section 2.3

Bio-heat equation

Heat transfer in living tissues is a complex process as it includes conduction, convection,

radiation, metabolism, evaporation and inherent temperature regulation. Blood perfusion

has a remarkable effect on the temperature distribution in the living tissues. In 1948,

Pennes was the first to propose and validate experimentally an analytical bio-heat transfer

model with a heat loss term due to blood perfusion[39]. He suggested that the rate of heat

transfer between blood and tissue is proportional to the product of the volumetric perfu-

sion rate and the difference between the arterial blood temperature and the local tissue

temperature.The following mathematical relationship in this direction is given below

hp = ωρbcb(1−ν)(TA −T ) (3.21)

where hp is the rate of heat transfer per unit volume of tissue, ω is the perfusion rate

per unit volume of tissue, ρb is the density of blood, cb is the specific heat of blood,

ν(0 ≤ ν ≤ 1) is a factor that accounts for incomplete thermal equilibrium between blood

in tissue, TA is the arterial blood temperature and T is the tissue temperature. He as-

sumed ν = 0 when he computed his theoretical curves and also incorporated the effect of

metabolism.

The bio-heat equation is extensively used in investigation of many heat transfer

problems with bio-medical applications. The general bio-heat equation is

ρc
∂T
∂ t

= ∇(λ∇T )+ωρbcb(Ta −T )+S (3.22)

where,

c is tissue specific heat

ρ is tissue density
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2.3 Bio-heat equation

∇ is divergence

λ is tissue thermal conductivity

S is rate of metabolic heat generation

t is time.

The first term on the right side of the equation accounts for the heat being conducted

through the various layers of tissues with differing thermal properties using Fourier’s law.

The second term of the bio-heat equation accounts for the heat transfer due to the blood

flow (also referred to as perfusion) within the body’s circulatory system. Finally, the third

term is used to represent the heat that is generated due to natural metabolic processes in

the body and external heat generation sources. The metabolic heat generation refers to

the heat produced in the body as a result of metabolic activities.
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Section 2.4

Survey Work

Thermal modelling of the eye is important as it can provide us with the tool to investi-

gate the effect of external heat sources as well as the abnormalities within the eye. Heat

transfer models of the eye have been developed during the past thirty years. Taflove and

Brodwin in 1975 studied microwave radiation effects on the human eye and obtained the

transient solution using the finite difference methods[21]. In this model, eye was consid-

ered as a homogeneous tissue with thermal parameters similar to that of the water. The

major drawback of this model was that the heat loss from the eye was considered due to

constant convective heat transfer coefficient over the entire eye ball surface and as such it

did not distinguish the heat transfer between the cornea and the environment, sclera and

the body. Amara studied laser-ocular media interaction through a numerical heat transfer

model[14]. Lagendijk in 1982 used the simple explicit forward difference heat balance

technique to study the temperature distribution in human and rabbit eyes[15].

A finite element model of heat transport in the human eye was presented by Scott

in 1988[20].The model was based on the bio-heat transfer equations. In that model it

could be seen some temperature distribution of the human eye with ambient tempera-

ture of 20◦C and blood temperature 37◦C. This model took in consideration steady state

temperature variation in the human eye when exposed to microwave radiation, but the

analytic method of solution did not take in consideration transient temperature variations

in the human eye. Scott showed that the temperature variation in the anterior segment of

the eye can occur if an increasing evaporation from the anterior corneal surface and rapid

blink factors appear simultaneously. This model did not include blood flow in the iris and

ciliary body; that is a deficiency in the model.

In the literature, one of the models that were presented earlier in the simple heat

transfer model to analyse thermal effect of microwave radiation of the human eye (Al-

24



2.4 Survey Work

Badwahy and Youssef, 1976)[37]. The model used an analytical approach for the solution

of steady state temperature variation.

E.H.Ooi and Kin Wei Ng studied two and three dimensional models of the human

eye in which Finite Element Method simulation and the investigation of thermal effects of

laser ocular media interaction were discussed[19]. Cvetkovic et al., developed the model

describing the thermal stress of the human eye exposed to laser radiation[16]. Khanday

M.A. and Saxena (2009) confirmed that when the outer surface of eye is exposed to the at-

mosphere, the temperature changes take place at various ambient temperatures[18]. Rafiq

A. and Khanday M.A.(2013) analyzed the heat transfer in human eye. Khanday et al.,

(2014) estimated the heat distribution in the multi-layered human eye[42]. In 2016, Rafiq

A. studied thermal behaviour of human eye in relation with change in blood perfusion,

porosity, evaporation and ambient temperature[32].

Gursu E. and Berberoglu K. (2020) focussed on the exposition of heat transfer pro-

cesses and the mass transfer processes that govern drug delivery methods to the retinal

especially in eye drops[43] . O.S. Zadorozhnyy et al.,(2022) also reviewed the heat ex-

change in human eye[44].
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Chapter 3

Mathematical study of one dimensional heat

distribution in human eye

The present chapter is devoted to find the solution of steady state heat distribution in the

five layers of human eye viz., cornea, vitreous humor, lens, aqueous humor and retina

by using the variational finite element method. The physiology and parameters responsi-

ble for heat transfer in the human eye have been taken into account with their significant

importance. It is understood that the outer surface of eye is exposed to the atmosphere

and thereby the temperature changes takes place at various ambient temperatures as con-

firmed by Khanday and Saxena in human head regions. The heat loss from the surface

takes place due to convection, radiation and evaporation.The main purpose of the study

is to estimate the temperature profiles at various nodal points of the multi-layered human

eye by using variational finite element technique. The advantage of this technique over

other numerical approximations is due to the applicability of this method over irregular

geometries. Since the nature of the eye is irregular, therefore, the method guarantees the

reasonable outcome.
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Section 3.1

Formulation of Mathemetical Model

The Pennes-Bioheat equaiton in one dimensional steady state case is given as

∂

∂x

(
k

∂T
∂x

)
−mcb (T −TA)+S = 0 (1.1)

Where k,m,cb,Sand TA respectively denote the thermal conductivity, mass flow rate, spe-

cific heat of blood,metabolic heat generation rate and arterial blood temperature. Ti rep-

resents the nodal temperatures respectively at distances li(i = 1,2,3,4,5) from the inner

layer of eye.

The outer surface of the eye i.e., cornea is exposed to the environment and heat loss

at the cornea takes place due to conduction,convection, radiation and evoperation. Thus,

the boundary condition at the cornea based on Newton’s law of cooling is given by

−k
∂T
∂x

= h(T −Ta)+LE. (1.2)

The temperature at the inner layer of the eye (retina) is assumed to be similar to that

of the body core temperature. The presence of blood in capillaries and regulatory mech-

anism at retina maintains the thermoregulatory mechanaism intact at the region. Hence,

boundary condition at that layer is given as

T1 = Tb = 370C. (1.3)
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Solution of the model

The variational integral

I =
∫

F
(
T,T ′,x

)
dx (1.4)

in optimum form is equivalent to the Euler-Lagrange differential equation

∂F
∂T

− d
dx

(
∂F
∂T ′

)
= 0 (1.5)

where

T ′ =
∂T
∂x

0n comparing equation (1.1) with Euler-Lagrange equation (1.5), we have the fol-

lowing variational integral by using equation (1.2)

I =
1
2

∫ li+1

li
k[
(

∂T
∂x

)2

+mcb(T −TA)
2 −2ST ]dx+

1
2

h(T −Ta)
2 +LETM (1.6)

= Ik + Im − IS + J

where

Ik =
1
2

∫ li+1

li
k
(

∂T
∂x

)2

dx

Im =
1
2

∫ li+1

li
mcb(T −TA)

2dx

Is =
∫ li+1

li
ST dx
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and

J =
1
2

h(T −Ta)
2 +LETM

The integral I to be minimised will be a function of the nodal temperatures I =

I(T1 T2 . . .Ti Ti+1 . . .TM).

We write

I = I(θ) (1.7)

where θ represents a column vector of M nodal temperatures.

θ = [T1 T2 . . .Ti Ti+1 . . .TM]T

The solution leading to temperature distribution at different layers of human eye can be

estimated by optimizing equation (1.7) using first order derivative of I with respect to

θ and equating to zero. In this process we can establish temperature profile at nodal

points T1 T2 . . .Ti Ti+1 . . .TM. Later on, we reassemble the variational integrals that is

Ik, Im, Is and J to obtain temperature distribution throughout the layers of human eye

using physiological parameters given in the table (3.2) we can get required solution of the

model.

Section 3.2

Numerical Computation

The equation (1.4) is the general model equation in which the domain can be discretized

into any number of nodal points. In the present case as already described the subdomains

and their corresponding nodal temperatures, thus for the solution of the equation (1.4),

the numerical values of the physiological parameters given in Table (3.2) have been used.
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These values were taken from Ooi E.H. and Ng E.Y.[19]

S.NO Quantity Value

01 l1 0 m

02 l2 0.035 m

03 l3 0.0385 m

04 l4 0.042 m

05 l5 0.045 m

06 k(1) 0.594J/m◦C

07 k(2) 0.4J/m◦C

08 k(3) 0.578J/m◦C

09 k(4) 0.58J/m◦C

10 (mcb)
(1) ≈ 0.30×10−3J/m3 ◦C

11 (mcb)
(2) ≈ 0.28×10−3J/m3 ◦C

12 (mcb)
(3) ≈ 0.33×10−3J/m3 ◦C

13 (mcb)
(4) ≈ 0.27×10−3J/m3 ◦C

14 L 579×10−3cal/kg

15 S 0J/m3

16 TA 37◦C

Table (3.2): Numerical values of the physiological parameters[19].

Section 3.3

Discussion and Conclusion

For the process of thermoregulation in human body, it is important to highlight the im-

portant factors responsible in the system. The thermal conductivity of the tissues, blood
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perfusion, metabolic heat generation, perfusion and evaporation, etc are mainly associ-

ated with the heat distribution in biological tissues. The eye is the only organ without

the immediate protective layer in terms of skin. Therefore, it is important to address the

issues related to the thermal stability in the human eye at various environmental distur-

bances. The present model is based on Pennes bio-heat equation together with appropriate

boundary conditions. Variational finite element method is realistically applicable for the

estimation of temperature profiles on irregular geometrical objects for the reasonable re-

sults. The general heat distribution model has been constructed and later confined to the

four layers of the human eye to estimate temperature profiles at various ambient tem-

peratures. The results were compared by researchers with the results obtained by other

methods[42]. Their results have shown considerable amount of effect due to perfusion

and evaporation on eye thermostat. Also, the temperature profiles at various environmen-

tal factors are discussed as:

(i) Temperature distribution of different layers of human eye at Ta = 30,25,20 and 15(◦C)

is represented in Fig. (3.1) by the curves 1, 2, 3 and 4 respectively with h = 8W/m2◦C

and E = 40W/m2. (ii) Temperature distribution of different layers of human eye at

Ta = 30,25,20 and 15(◦C) is represented in Fig. (3.2) by the curves 1, 2, 3 and 4 re-

spectively with h = 8W/m2◦C and E = 20W/m2.
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Figure 3.1: Temperature vaiation at E = 40W/m2

Figure 3.2: Temperature vaiation at E = 20W/m2
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Chapter 4

Review of the Paper "Thermal Behaviour of

Human Eye"

Introduction

The heat distribution in human eye is basically due to conduction, convection, evapora-

tion, etc. The thermal stability of human eye is a subject of great concern due to its in-

sufficient blood flow and lack of skin as a protecting layer. The physiology of the human

eye operates the thermoregulatory mechanism up to large extent in various physiological

and moderate ambient conditions; however, the severity of heat and cold causes adverse

effects on its thermal equilibrium. Such disturbances lead to damage the sensitive tissues

of the human eye and thereby eye vision. Thus, it is imperative to study the role of phys-

iological and environmental conditions on the thermal stability and other homeostasis of

human eye. The information in this direction can be useful not only in clinical situations

but can help to maintain the heat distribution while performing laser surgeries and other

medical diagnosis.

In this chapter, a mathematical model has been established to estimate the thermal stress

in human eye in terms of changes in porosity, evaporation, perfusion rate and other envi-

ronmental disturbances.
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Section 4.1

Model Development

The governing equation used for modeling heat flow inside the biological tissues is based

on Pennes’ bio-heat equation which involves the role of conduction, metabolic heat gen-

eration and blood perfusion term[39] . Since human eye is mainly comprised of water

and therefore in few regions, the metabolic heat generation is playing negligible role for

its temperature regulation. Blood perfusion term is dropped in the outer regions of the

human eye while blood flow in sclera /iris plays a vital role in maintaining the eye tem-

perature close to the other body organs. This region is modelled as a porous medium and

incorporating blood circulation through the tissue. Therefore, the modified Pennes’ bio-

heat equation has been used incorporated earlier by Nakayama and Kuwahara [36] and

Khanafer and Vafia [33] is given as

(1−φ)ρc
∂T
∂ t

= ∇((1−φ)k∇T )+ρbcbω(Tb −T )+S (1.1)

where k, T, t, S, φ , ω,ρ and c represents the thermal conductivity, temperature, time,

metabolic heat generation, porosity, perfusion rate, density and specific heat of the tissues.

In order to make use of variational finite element method, the domain of the study is

assumed to be consisting of sub-domains − cornea, aqueous humor, lens, viterous humor

and sclera with the size of regions as l1, l2 − l1, l3 − l2, l4 − l3 and l5 − l4 respectively.

Also T (0), T (1), T (2),T (3) and T (4) represents the temperatures of the respective regions.

Conduction is dominant heat transfer mechanism in cornea, aqueous humor, lens and

vitreous humor parts of the eye and as such the Pennes’ bio-heat equation for heat flow in

these regions reduces to classical heat equation:

ρici
∂T (i)

∂ t
= ∇(ki∇T (i)); (i = 0,1,2,3) (1.2)

34



4.1 Model Development

Figure 4.1: Schematic diagram of human eye [46]

Blood flow occurs in the sclera /iris region which we considered to be the porous

media as such blood perfusion and porosity accounts for the heat transfer. The governing

equation used for the heat transfer in the sclera region is given as

(1−φ4)ρ4c4
∂T (4)

∂ t
= ∇((1−φ4)ki∇T (4))+ρbcbω(Tb −T (4)) (1.3)

Boundary Conditions

The thermal exchange between the eye and blood flow at the sclera occurs through con-

vection and therefore the boundary condition at this interface is given by Newtons law of

cooling

k
∂T
∂n

= hb(T −Tb); at x = l5 (1.4)
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where n is the normal direction to the surface of the boundary, hb is the blood convection

coefficient and Tb is the blood temperature.

At the exterior region (cornea), heat loss from the eye occurs through convection

and evaporation and hence the boundary condition is given as

k
∂T
∂n

= ha(T −Ta)+E; at x = l0 (1.5)

where ha is the ambient convection coefficient, Ta is the ambient temperature and E is the

evaporative heat loss due to blinking and tears.

Section 4.2

Solution of the Model

The solution of the model was given by the researchers (Aasma Rafiq and M.A.Khanday)

based on variational finite element method . On comparing equation (1.1), (1.4) and (1.5)

with Euler-Lagrange differential equation, the layer-wise variational integrals are given

below [18]

Ii =

li+1∫
li

1
2

[
(1−φi)ki

(
∂T (i)

∂x

)2
+ρici(1−φi)

(
∂ (T (i))2

∂ t

)
+ γiρbcbω(Tb −T (i))2

]
dx

+δi

(1
2

ha(T0 −Ta)
2 +ET0

)
+ γi

hb

2
(T5 −Tb)

2 (2.6)

where δi =

1, i = 0

0,otherwise
and γi =

0, i = 0,1,2,3

1, i = 4

The solution of the problem was established over each of the sub-domains using Lagrange

linear shape functions given as

T (i) =
li+1Ti − liTi+1

li+1 − li
+

Ti+1 −Ti

li+1 − li
x; i = 0,1, . . . ,4. (2.7)

36



4.2 Solution of the Model

Using equations (2.7) to equations (2.6), and by virtue of finite element method, the heat

regulation in the complete domain can be computed by assembling these variational inte-

grals as

I =
4

∑
i=0

Ii (2.8)

On equating the partial derivatives of I w.r.t. Ti (i = 0,1,2,3,4,5) to zero leads to

the optimization of I through the following system of differential equations

L1Ṫ0 +L2Ṫ1 +A1T0 +A2T1 = Q1

M1Ṫ0 +M2Ṫ1 +M3Ṫ2 +B1T0 +B2T1 +B3T2 = 0

N1Ṫ1 +N2Ṫ2 +N3Ṫ3 +C1T1 +C2T2 +C3T3 = 0

O1Ṫ2 +O2Ṫ3 +O3Ṫ4 +D1T2 +D2T3 +D3T4 = 0 (2.9)

P1Ṫ3 +P2Ṫ4 +P3Ṫ5 +E1T3 +E2T4 +E3T5 = Q2

R1Ṫ4 +R2Ṫ5 +F1T4 +F2T5 = Q3

where the coefficients of the equations (2.9) are given in Appendix.

The above system of equations (2.9) in matrix form can be written as

MṪ +NT = Q (2.10)

where

M =



L1 L2

M1 M2 M3

N1 N2 N3

O1 O2 O3

P1 P2 P3

R1 R2


N =



A1 A2

B1 B2 B3

C1 C2 C3

D1 D2 D3

E1 E2 E3

F1 F2


Q =

(
Q1 Q2 0 0 0 Q3

)T
T =

(
T0 T1 T2 T3 T4 T5

)T
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4.3 Numerical values

Section 4.3

Numerical values

To solve equations (2.9), the following values of parameters given by Scott and Ng et al.,

[40] and [19] were considered.

Table 4.1: Numerical values of the control physiological parameters

Parameters Values

Blood temperature, Tb 37 0C

Blood convection coefficient, hb 65Wm−2 0C−1

Ambient convection coefficient, ha 10Wm−2 0C−1

Thermal conductivity of cornea, k0 0.58Wm−1 0C−1

Thermal conductivity of aqueous humor, k1 0.58Wm−1 0C−1

Thermal conductivity of lens, k2 0.40Wm−1 0C−1

Thermal conductivity of viterous humor, k3 0.603Wm−1 0C−1

Thermal conductivity of sclera, k4 1.0042Wm−1 0C−1

The numerical estimates for steady state temperature distribution in different re-

gions of human eye with different values of porosity, blood perfusion, ambient tempera-

tures and evaporation rates have been carried out.

Therefore, the solution of the system given in equations (2.10) has been carried out

using Crank-Nicolson method. The successive temperature profiles in terms of time are

given by the relation(
M+

∆t
2

N

)
T (i+1) =

(
M− ∆t

2
N

)
T (i)+∆t Q (3.11)

where ∆t is the time interval and T (0) represents the 6×1 matrix for the initial tempera-

ture.
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Section 4.4

Discussion and Conclusion

In this study, the modified Pennes’ bio-heat equation has been used to study the thermal

stability of human eye. The variational form of finite element method has been employed

to establish variational integrals at subregions of multi-layered eye. The formulation of

the model incorporates various parameters including metabolic heat generation, blood

density, specific heat, porosity of the tissue medium, evaporation and other physiological

processes regulating heat transport in human eye. The eye as a domain is composed of

five regions viz. cornea, aqueous humor, lens, viterous humor and sclera. The overall

temperature distribution in human eye has been approximated by solving variational inte-

grals corresponding to each sub-domain. Variational finite element method is realistically

valid for the determination of temperature distribution in irregular geometrical objects for

the reasonable output. It has been observed from the results that the main factors affect-

ing the temperature distribution in the human eye are porosity, blood perfusion, ambient

temperature and tear evaporation. The numerical value of the temperatures at the different

regions were obtained and are found to fall within the range of the values given by other

numerical and experimental data reported in the literature [25], [26], [40].

Figures (4.2) and (4.3) shows the steady state temperature distribution of the one di-

mensional multi-layered eye model. The warmer region is considered at the sclera which

may be due to the presence of blood vessels whereas the cooler region is the cornea sur-

face where the heat gets lost due to conduction, convection and tear evaporation. Since

sclera has porosity and blood perfusion, it has been observed that increase in blood per-

fusion helps the eye to maintain its temperature to that of internal body temperature.

Effect of porosity and blood perfusion:- Figure (4.2) shows the impact

of the blood perfusion rate on the temperature distribution at different layers.

Keeping porosity at the constant value of 0.4 and changing perfusion rates as
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4.4 Discussion and Conclusion

Figure 4.2: Effect of blood perfusion rate on temperature distribution at

φ = 0.4, E = 40Wm−2 and Ta = 250C.

Figure 4.3: Effect of porosity on temperature distribution at

ω = 0.0708/sec, E = 40Wm−2 and Ta = 250C.
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4.4 Discussion and Conclusion

0.0113, 0.022, 0.047and0.0708/sec, it is evident that the corneal temperature varies be-

tween 32.080C to 32.440C and that of the sclera region ranges from 36.760C to 37.030C.

It reveals from the study that higher blood flow rate towards the sclera helps the eye to

maintain its temperature same to that of the body temperature. Figure (4.3) shows the

Figure 4.4: Effect of ambient temperature on eye tissue temperature distribution at

φ = 0.4, ω = 0.0708/secand E = 40Wm−2.

effect of porosity on temperature distribution in human eye where two values of porosity

0.1 and 0.8 were considered. It is observed from the curves that increase in the value

of porosity keeps the temperature within the range of 32.380C to 37.10C while as at 0.1

porosity, it takes the values 32.50C to 370C.

Effect of atmospheric temperature:- Figure (4.4) shows the effect of the

different ambient conditions- four different sets of data values of Ta equals to

00C,300C, 400C and − 100C are considered. At Ta = 300C, the temperature distribution

along the corneal surface varies from 33.860C to 37.020C; At Ta = 00C, it varies be-

tween 26.440C to 37.080C; At Ta = 400C, temperature ranges from 36.70C to 370C and at

Ta =−100C, margin lies between 22.450C to 37.10C which shows that in cold conditions,

corneal temperature is very low which may have adverse effects on the thermal stability

of human eye; while as at the higher environmental temperatures, the inbuilt mechanism
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4.4 Discussion and Conclusion

of human eye tries to bring it close to 370C. Thus increase or decrease in the ambient

temperature may be very helpful while performing some laser surgeries.

Effect of evaporation:- To analyse the effect of evaporation rate on temperature distribu-

Figure 4.5: Effect of evaporation rate on temperature distribution at

φ = 0.4, ω = 0.0708/secand Ta = 250C.

tion in human eye, three cases were considered - E = 40Wm−2, 70Wm−2 and100Wm−2.

From Figure (4.5), it has been observed that with increase in evaporation rate, the corneal

temperature decreases having a slight variations on temperatures of lens, viterous humor

and sclera. Thus slight variation in temperature may be due to the blood supply at the

sclera region which tries to keep the temperature of surrounding tissue similar to that of

the body temperature.

The thermal models become more accurate while incorporating more physiological

properties related to the tissue. Since any change in temperature can lead to the change in

the values of the parameters, so the present model can be used for both the normal tissue

as well as to the unhealthy eye. The present work done by Aasma Rafiq and M.A.Khanday

can be applied to all those tissues which behave similar to that of human eye with appro-

priate physiological changes in parameters. These thermal models on human eye can be

useful in predicting certain diseases related to temperature changes.
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Section 4.5

Modelling Blood Flow in Human Eye

We know that blood is carried from heart to various parts of the eye and eventually re-

turned to heart. In fact, blood is carried through system of elastic tubes-the arteries,

capillaries and veins. The blood returns to the heart without actually leaving the system.

This process is known as circulation of blood or flow of blood.

We also know that proper flow of blood is essential to transmit oxygen and other nutri-

ents to various parts of the eye in human beings as well as in all other animals. Any

constriction in the blood vessel or any change in the characteristics of blood vessels can

change the flow and cause damages ranging from minor discomfort to death, in worst

case. Therefore a better understanding of the physiology of the system is essential. Math-

ematical modeling of the system is aimed at this[31]:

As a first step in modeling, we shall first identify the essential characteristics of blood

flow. We list them below:

i) Blood is a non-homogenous fluid.

ii) Blood vessels are elastic, they branch repeatedly.

iii) Blood flow is unsteady or pulsatile.

iv) Blood flow is generally laminar except for flow near heart.

Viscosity

Suppose a force is applied to a portion of a mass of a fluid, it will begin to flow but if the

force is removed the movement will be brought to rest. On the other hand, if a similar

portion of a fluid is kept in moving, the movement will be transferred to the rest of the

fluid. This property is analogous to that of friction between solid bodies.
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4.5 Modelling Blood Flow in Human Eye

Figure 4.6: Motion of fluid between parallel plates

Now, we shall explain the concept of Viscosity of a fluid based on the following simple

experiment([31]). Consider the motion of a fluid between two long parallel plates one of

which is at rest and the other one is moving with a constant velocity U parallel to itself as

shown in the figure(4.6). Let the distance between the plates be h and the fluid velocity be

u. Assume that the fluid pressure is constant throughout the fluid. Due to cohesive nature

of fluid it adheres to the plates. The fluid velocity at the lower plate is zero and that at

upper plate is U. This is because the upper plate is moving and the lower plate is at rest.

So, we get

u = 0, when y = 0

u =U, when y = h.

Expermentally, it is observed that the fluid velocity distribution is linear and as such

it is given by

u(y) =
U
h

y (5.12)
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4.5 Modelling Blood Flow in Human Eye

where y is the direction at right angles to the flow. In order to support the motion it is

necessary to apply a tangential force to the upper plate. Experimentally it is observed

that this force, taken per unit area, is proportional to the velocity U of the upper plate and

inversely to the distance h. If τ denote the force, then τ is directly proportional to U
h . This

is denoted by

τ ∝
U
h

(5.13)

Many researchers have studied this property; the first theoretical consideration was made

by Newton in which he considered the motion imparted to a large volume of fluid by the

rotation of a long cylinder suspended in it. The hypothesis on which he based his deriva-

tion was that the resistance which arises from the defect of slipperiness of the parts of the

liquid, other things being equal is proportional to the velocity with which the parts of the

liquid are separated form one another. "Defect of slipperiness" was the term used to de-

scribe what we now call viscosity. This hypothesis emphasizes immediately that in a fluid

moving relative to a surface there are laminae slipping on one another and so moving at

different velocities. There is thus a velocity gradient i.e., du/dy in this case in a direction

perpendicular to the surface. This gradient is usually called the rate of shear. In modern

terms, the velocity gradient is written as du/dy, where y is the distance from the axis. The

resistance or force is denoted by τ.

Then by Newton’s hypothesis

τ = µ(du/dy) (5.14)

where µ is a constant. Note that when we differentiate the expression given in equation

(5.12) and substitute for du/dy in (5.14), we get the expression given in (5.13) is called

the proportionality constant which gives the measure of the viscosity of the fluid, µ is also

called the coefficient of viscosity.

The unit of viscosity is called Poise. The viscosity of water at 20.2◦C is 0.01 Poise and at

37◦C it is 0.0069 Poise. At 20◦C water it is approximately 60 times more viscous than air.
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4.5 Modelling Blood Flow in Human Eye

Figure 4.7: Flow properties of simple fluid

Over the range 0◦C - 30◦C the viscosity of air increases by about 9% while that of water

decreases by 45%. Using this we can say that the viscous components of resistances to

motion (the frictional drag) is about 9% higher for birds flying in tropics than for the same

bird flying in arctic. Also fish (and other marine creatures) have considerably easier way

for moving about in tropics than in arctic water.

For convenience, the viscosity of any fluid is expressed relative to the viscosity of water.

This viscosity of fluid is known as relative viscosity.

Equation (5.13) is known as Newton’s law of friction. Fluids obeying this law are called

Newtonian otherwise non-Newtonian. Most of the common fluids obey this law.

Poiseuille’s Law

Poiseuille’s law is the relation between flow rate and pressure gradient for fluid flow in

a rigid cylindrical tube under a pressure gradient. (Note that the pressure gradient is the

pressure drop per unit lenght d p
dz = lim△(x)→0

△p
△z .)

In order that we can understand the flow properties of biological fluids such as blood

which may exhibit non-Newtonian properties, it is first necessary to discuss the behavior

of simple or Newtonian fluids. Let us look at the flow properties of a simple liquid like

water in a very long horizontal pipe. Imagine that the pipe is circular in cross-section and

d units in diameter as shown in above figure(4.7).
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4.5 Modelling Blood Flow in Human Eye

Its entrance and exit are connected to large reservoirs so that the pressure drops between

the ends of the tube may be maintained constant and a steady flow of water through the

pipe is achieved. Small side hole, or lateral, pressure tappings are made in the pipe at fre-

quent intervals along its length and these tappings are connected to a series of manome-

ters. It is thus possible to measure the pressure drop per unit length or pressure gradient

along the pipe.

If the pressure at the inlet to the pipe is p1 and that at the outlet p0, then we shall observe

that is p1− p0 (or △p) is increased by raising the level in the upstream reservoir, so is the

flow rate V through the pipe.

It was Poiseuille in 1840, who as a first step towards understanding the mechanism of

the circulation, published a quantitative study of the flow properties in a pipe very remote

from the entrance, and flow conditions in this region are now named after him. In addi-

tion to varying the flow rate and tube size, Poiseuille also studied the effect of viscosity

on the flow conditions. Here we found that as viscosity was increased so was the pressure

gradient necessary to maintain a given flow-rate.

Now to derive Poiseuille’s formula, we make use of Newton’s second law of motion which

say that

Mass×acceleration = body f orce+ pressure gradient f orce+Viscous f orce. (5.15)

Let us consider the fluid flow through a circular tube with length L and diameter D = 2R,

which is small compared with the length. We assume that the rate of flow is constant

i.e. flow is steady. We also assume that the fluid velocity everywhere inside the tube is

laminar stream lined. As we know for a laminar flow, the velocity is purely in the direction

parallel to the axis of the cylinder. The fluid velocity at the inner surface is zero and it

reaches maximum value on the axis (here axis means axis of the cylinder.)

We can consider the flow of fluid as the simultaneous movement of several layers, which

are in the form of hollow cylinders one inside the other. If we assume that y is the radius

of any one of these cylinders, then y varies from 0 to R, i.e., 0 < y < R as shown in the
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4.5 Modelling Blood Flow in Human Eye

Figure 4.8: Fluid flow through cylindrical tube

figure(4.8).

If we consider the fluid flow to be due to pressure differences at the ends of the tube from

the higher to the lower one then the only force opposing this flow is viscous resistance.

We know that this force is µ(du/dy), and we find that the fluid particles are accelerated by

the pressure difference and retarded by viscous resistance. If we look at equation (5.14),

then we will find that the only forces present are pressure gradient force and viscous force.

This is because, since the flow is a steady flow in a straight tube, the fluid is not subjected

to any acceleration (i.e. when the flow is steady, things do not change with respect to

time). Therefore, LHS of equation (5.15) is zero also, since we are considering the flow

in horizontal pipes, gravitational forces are not relevant and therefore the body force term

also vanishes. Thus, equation (5.14) reduces to pressure gradient force =-Viscouos force.

Now if Fvisc denote the viscous force and F(P) denote the pressure difference, then we

have

F(P) =−Fvisc (5.16)

(The negative sign indicates one force accelerates the motion, the other retards.)

Now we will calculate the LHS and RHS of equation (5.16), we first consider the RHS of

equation (5.16). Here note that each flow is in the form of cylindrical layer of length L

and radius y, y varying from 0 to R. The viscous force acts on the surface and it is given
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by the following formula:

Fvisc = sur f ace area o f the cylinder × viscosity × the velocity gradient. (5.17)

We have denoted the viscosity as µ and we know that the velocity gradient is given by

du/dy. Therefore we can write equation (5.17) as

Fvisc = 2πyL
(

µ
du
dy

)
(5.18)

Next we shall find the difference pressure.

Note that the force exerted by the pressure at an end of the cylinder is pressure at that end

multiplied by the cross sectional area. Now if P1 and P2 respectively denote the pressures

at either end of length L of the cylinder considered, then the required pressure difference

is

F(P) = πy2(P1 −P2) (5.19)

Substituting for F(P) and Fvisc in equation (5.16), we get

πy2(P1 −P2) =−2πyL
(

µ
du
dy

)
or

y(P1 −P2) =−2Lµ
du
dy

.

This gives the velocity gradient du/dy as

du
dy

=
−y(P1 −P2)

2Lµ
(5.20)

(the negative sign here implies u decreases when y increases. Also, note P1 > P2).

Now, substituting this value of the velocity gradient in equation (5.14), we get the shear

stress as

τ = µ(du/dy)

=
µ × (−y)× (P1 −P2)

2Lµ

=
−y(P1 −P2)

2L
(5.21)
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Now if we consider the wall of the tube, then the radius y of the wall is R, therefore from

equation (5.21) we get

Shear stress at the wall o f the tube =
−R(P1 −P2)

2L
(5.22)

Thus, we have derived the equation describing the flow of fluid in a thin tube of length L

with pressures P1 and P2 at the ends.

Now, we have to solve equation (5.20) to get the velocity u.

Let us consider the equation (5.20), this equation is a first order linear ordinary differential

equation. To find the solution, we integrate on both sides of equation (5.20) and we get

the velocity as

u(y) = − (P1 −P2)

4µL
y2 +C (5.23)

where C is the constant of integration which is to be evaluated. To calculate C, it is

necessary to prescribe the boundary conditions. Here, we make use of the assumption

made by Newton that the fluid in contact with the wall is at rest,

i.e., u=0, when y=R

Substituting the condition in equation (5.23) we get

C = − (P1 −P2)

4µL
R2.

So that the equation(5.23) reduces to

u(y) =−y2 (P1 −P2)

4µL
+R2 (P1 −P2)

4µL

= (R2 − y2)
(P1 −P2)

4µL
(5.24)

where u is the velocity component parallel to the axis, R is the radius of the cylinder, L is

the length of the tube,µ is the viscosity of the fluid and P1 −P2, the pressure drop.

Therefore, equation (5.24) describes the velocity of the fluid in a steady laminar flow.

Now, let us see what equation (5.24) represents geometrically. Since equation (5.24) is an

equation of a parabola where u=0 when y=R and u is maximum when y=0 i.e, at the axis
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Figure 4.9: The parabola shows the velocity profile in a steady laminar flow

of the tube as shown in the figure (4.9).

Our boundary conditions say that the velocity is zero at the wall. If the principle

of conservation of mass is to hold well, the same amount of fluid should come out of

every cross-section. The loss of velocity at the wall has to be compensated by maximum

velocity at the centre.

Thus, we find that the velocity distribution in a tube, with given pressure gradient is

parabolic.

So, we have got an equation, which gives velocity distribution in a tube.

Let us now find the volume of fluid, flowing through a section of the tube per unit time.

Here we shall see how we will use equation (5.24) along its axis. That is, we have to

determine the volume of the solid of revolution of parabola.

The required volume V = Volume of parabola of revolution.

Then

V =
∫ 2π

0

∫ R

0
u(y)ydydθ
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Now substituting for u in the above integral, we get

V =
2π(P1 −P2)

4Lµ

∫ R

0
(R2 − y2)ydy

=
(P1 −P2)πR4

8Lµ

i.e.,

V =
(P1 −P2)πR4

8Lµ
(5.25)

Equation (5.25) is called Poiseuille’s law and it says that the volume is proportional to the

first power of the pressure drop per unit length, (P1 −P2)/L, and to the fourth power of

the radius of the pipe R4 and it is inversely proportional to the length of the tube as well

as the viscosity of the fluid. This equation is a general solution for any problem of fluid

flow through cylindrical pipes, provided that the fluid flow satisfies all the assumptions,

which are assumed in obtaining equation (5.25).The assumptions made are:

1) The fluid is homogeneous and its viscosity is the same at all rates of shear.

2) The fluid does not slip at the wall of the tube. This was the assumption that u=0

when y=R which was made in evaluating the constant of integration in equation

(5.20).

3) The flow is laminar, i.e. the fluid is flowing parallel to the axis of inner surface wall

of the tube.

4) The rate of flow is steady.

5) The tube is along with length much greater than the diameter of the tube.

The quantities given in Poiseuille’s equation, i.e, in equation (5.25) R and L are in cm,

P = Dynes/cm2 and µ is Poise.
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Case Study:

For any given flow of fluid due to pressure gradient in a tube of radius R and length L,we

have evaluated the bounds for velocity distribution by the formula

u(y) =
(P1 −P2)

4µL
(R2 − y2) : 0 ≤ y ≤ R

Where µ is the viscosity of the fluid and P = P1 −P2 is fluid pressure at the ends of the

tube.

i.e.,

u(y) =
P

4µL
(R2 − y2), (5.26)

At y = 0,u(0) = PR2

4µL and at y = R,u(R) = o

Therefore,

0 ≤ u(y)≤ PR2

4µL

Now, we have P = 4× 103 Dyne/cm2, R = 8× 10−3cm, µ = 0.027 Poise and L = 2cm

Then the bounds of velocity distribution are given as;

At y=0,

u(0) =
PR2

4µL

=
4×103 × (8×10−3)2

4×0.027×2

=
10−3 ×64
0.027×2

=
32×10−3

0.027

=
32
27

= 1.185cm/s
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At y = R,

u(R) = 0

∴ 0 ≤ u(y)≤ 1.185

Now we have evaluated shear stress(τ) on the wall i.e. y=R given as

τ =
−R(P1 −P2)

2L

=−8×10−3 ×4×103

2×2

=−8 Dynes/cm2

In magnitude, shear stress (τ) is 8 Dynes/cm2
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