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Abstract

The project dissertation comprises four chapters that focuses on constant mean

and constant Gaussian curvature surfaces in three dimensional spaces. The first chap-

ter provides an introductory overview of the differential geometry of surfaces in three-

dimensional spaces.

In the second chapter, we discuss the classification of minimal and constant mean

curvature translation surface in Euclidean 3-space E3. We also discuss the affine minimal

and constant mean curvature translation surface.

In the third chapter, we discuss the translation surfaces with zero and non-zero con-

stant mean curvature and non-zero constant Gaussian curvature in Minkowski 3-spaces.

We also discuss the affine translation surface with zero mean curvature in the same space

of E3
1 .

In the last chapter, we take into consideration the upper half plane model of hy-

perbolic space H3 and discuss the classification of minimal translation surfaces in this

setting.
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Chapter 1
Preliminaries

Introduction

In this chapter, we give a brief introduction to the differential geometry of surfaces in

three-dimensional spaces. The main purpose of this chapter is to provide the basic no-

tions of differential geometry and with the essential formulas that will be needed in the

upcoming chapters. Most of the notions, formulas and definitions in this chapter are in-

cluded in consultation with [1, 2, 3, 4, 5, 6, 7, 8, 9].

Let E3 be the 3-dimensional Euclidean space with the metric

<,>= dx2 +dy2 +dz2.

We denote a regular surface S in E3 by r(x,y) = (X(x,y),Y (x,y),Z(x,y)), and is obtained

by taking pieces of a plane, deforming them, and arranging them in such a way that the

resulting figure has no sharp points, edges, or self-intersections and so that it makes sense

to speak of a tangent plane at points of the figure. The idea is to define a set that is, in a

certain sense, two-dimensional and that also is smooth enough so that the usual notions

of calculus can be extended to it.
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Preliminaries

Definition 1.0.1. A subset S ⊂ R3 is a regular suface if, for each p ∈ S, there exists a

neighbourhood V in R3 and a map r : U → V ∩ S ⊂ R3 of an open set U ⊂ R2 onto

V ∩S ⊂ R3 such that

1. r is differentiable. This means that if we write

r(x,y) = (X(x,y),Y (x,y),Z(x,y)), (x,y) ∈U,

the functions X(x,y), Y (x,y), Z(x,y) have continuous partial derivatives of all orders in

U.

2. r is homeomorphism. Since r is continuous by condition 1, this means that r has an

inverse r−1 : V ∩S →U, which is continuous.

3. For each q ∈U, the differential drq : R2 → R3 is one to one.

Definition 1.0.2. Let S be a regular surface, p ∈ S, consider all the curves defined on S

passing through p. We define the tangent plane at p denoted by TpS as the vector space

of dimension 2 which contains all vectors tangent to the family of curves at point p.

Definition 1.0.3. Let p ∈ S and w ∈ TpS, the quadratic form Ip : TpS → R, defined by:

Ip(w) = ⟨ w, w⟩= ∥w∥2 ≥ 0,

is called the first fundamental form of the regular surface S at p.

If rx and ry are the partial derivatives with respect to (w.r.t) x and y respectively,

then the first fundamental form can be expressed in the base {rx,ry} associated with a

parametrization r(x,y) at p as follows:

Let w = α ′(0) = rxx′+ ryy′ ∈ TpS.

Then

Ip(w) = ⟨ rxx′+ ryy′,rxx′+ ryy′ ⟩

= E(x′)2 +2Fx′y′+G(y′)2,
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Preliminaries

where E = ⟨ rx,rx ⟩, F = ⟨ rx,ry ⟩ and G = ⟨ ry,ry ⟩ are the coefficients of the first funda-

mental form in the base {rx,ry} of TpS.

Definition 1.0.4. A regular surface S is orientable if it is possible to cover S with a family

of coordinate neighbourhoods so that if a point p ∈ S is in two neighbourhoods of this

family, then the change of coordinates has positive Jocobian at p. The choice of family

that satisfies this condition is called an orientation of S and S is called oriented. If it is

not possible to find such a family, then S is called non-orientable.

Fix a parametrization r : U ⊂ R2 → S, we calculate the normal vector at each point q(U)

as

N(q) =
rx × ry

∥rx × ry∥
(q).

Definition 1.0.5. Let S ⊂ R3 be a surface with an orientation, we have the Gauss map

N : S → S2 ⊂ R3 defined to be p → N(p).

The Gauss map can be defined (globally) if and only if the surface is orientable. The

Gauss map can always be defined locally (that is on a small piece of the surface).

The differential of the Gauss map dNp : TpS → TpS is a self-adjoint linear operator.

That is

⟨ dNp(w1),w2 ⟩= ⟨ w1,dNp(w2) ⟩, w1,w2 ∈ TpS.

Therefore, we can associate dNp with a quadratic form Q in TpS given by

Q(w) = ⟨ dNp(w),w ⟩, w ∈ TpS.

Definition 1.0.6. Let p ∈ S, the quadratic form IIp : TpS → R defined by

IIp =−⟨ dNp(w),w ⟩

is called the second fundamental form of the regular surface S at p.
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Preliminaries

The second fundamental form can be expressed in the base {rx,ry} associated with a

parametrization r(x,y). In fact, let N be the normal vector to S at p ∈ S and α(s) =

r(x(s),y(s)) a parameterized curve in S with α(0) = p. Therefore, the tangent vector to

α(s) at p is α ′ = rxx′+ ryy′. If we indicate by N the restriction of normal vector to the

curve α(s), we have

⟨ N(s),α ′(s) ⟩= 0.

This implies that

⟨ N(s),α ′′(s) ⟩=−⟨N′(s),α ′(s) ⟩.

Let w = α ′(0) = rxx′+ ryy′ ∈ TpS.

Then

IIp =−⟨dN(α ′(0)),α ′(0)⟩

=−⟨N′(0),α ′(0)⟩

=−⟨N(0),α ′′(0)⟩

=−⟨N(0),rxx(x′)2 + rxx′′+2rxyx′y′+ ryy(y′)2 − ryy′′⟩.

Since ⟨N,rx⟩= ⟨N,ry⟩= 0, it follows that

IIp(w) = L(x′)2 +2Mx′y′+N(y′)2, (1.0.1)

where L = ⟨N,rxx⟩, M = ⟨N,rxy⟩ and N = ⟨N,ryy⟩ are the coefficients of the second fun-

damental form in the base {rx,ry} of TpS. Also rxx, rxy and ryy are the second order partial

derivatives of r(x,y) w.r.t. x and y.
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Preliminaries

Equation (1.0.1) is also written as

II = Ldx2 +2Mdxdy+Ndy2,

L =
1√

|EG−F2|
det(rx,ry,rxx),

M =
1√

|EG−F2|
det(rx,ry,rxy),

N =
1√

|EG−F2|
det(rx,ry,ryy).

Definition 1.0.7. Let p ∈ S and let dNp : TpS → TPS be the differential of the Gauss map.

The determinant of dNp is called Gaussian curvature K of S at p and the half of trace of

dNp is called as mean curvature H of S at p defined as

K =
LN −M2

EG−F2 , H =
LG−2MF +NE

2(EG−F2)
(1.0.2)

respectively. Also for K = 0, H = 0, the surface is called as developable and minimal

surface, respectively.

Definition 1.0.8. A surface S in E3 is called a translation surface, if it can be parameter-

ized by

r(x,y) = (x,y, f (x)+g(y)),

where f and g are smooth functions of x and y respectively.

Definition 1.0.9. A generalized notion of translation surface appear in the form of affine

translation surface and is defined as:

r(x,y) = (X(x,y),Y (x,y),Z(x,y))

= (x,y, f (x)+g(y+ax))

for some non zero constant a.

Definition 1.0.10. The Minkowski space is the space E3
1 = (R3,⟨,⟩), where the metric ⟨,⟩

is

⟨u,v⟩= u1v1 +u2v2 −u3v3, u = (u1,u2,u3),v = (v1,v2,v3),
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Preliminaries

which is called the Lorentzian metric.

Definition 1.0.11. A vector v ∈ E3
1 is said to be

(1) spacelike if ⟨v,v⟩> 0 or v = 0,

(2) timelike if ⟨v,v⟩< 0 and

(3) lightlike if ⟨v,v⟩= 0 or v ̸= 0.

Definition 1.0.12. A Hyperbolic 3-space denoted by H3, is defined to be a 3 dimensional

complete, simply connected space form with a sectional curvature of -1.

A Hyperbolic 3 space has various models and in this work we deal with the half-space

model of H3 defined below.

Definition 1.0.13. A half-space model of the hyperbolic space H3 is denoted by R3
+ and

it is defined by

R3
+ = {(x,y,z) ∈ R3;z > 0}.

The metric of R3
+ is given by the following line element

ds2 =
dx2 +dy2 +dz2

z2 .

Definition 1.0.14. A unit normal vector field n to S with respect to the hyperbolic metric

determines a unit normal vector field N to S with respect to the Euclidean metric by the

relation N = n
z .

The hyperbolic principal curvatures k′is are related to the Euclidean principal curvatures

ke
i by

ki = zke
i +N3,

where N3 is the third component of the unit normal vector N. If we denote by H and He

the hyperbolic and Euclidean mean curvature on a surface S respectively, we have the

relation

H(x,y,z) = zHe(x,y,z)+N3(x,y,z). (1.0.3)
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Preliminaries

Definition 1.0.15. Consider the half-space model of H3. A surface S in hyperbolic space

H3 is a translation surface if it is given by r : U ⊂ R2 → R3
+ and is written as

r(x,y) = (x,y, f (x)+g(y)), (x,y) ∈U (typeI), (1.0.4)

r(x,z) = (x, f (x)+g(z),z), (x,z) ∈U (typeII), (1.0.5)

where f and g are smooth functions on open subsets of R.
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Chapter 2
Translation surfaces in Euclidean 3-space

E3

In this chapter, we discuss the classification of minimal and constant mean curvature trans-

lation surface in Euclidean 3-space E3. We also discuss the affine minimal and constant

mean curvature translation surface. This chapter is a survey of the articles in [4, 5, 6, 9].

Theorem 2.0.1. Let S be a translation surface with zero mean curvature in 3-dimensional

Euclidean space E3. Then S is congruent to the following surface

r(x,y) =
(

x,y,
1
a

log
∣∣∣∣cos(ax)
cos(ay)

∣∣∣∣) , 0 ̸= a ∈ R.

Proof. Consider the translation surface parameterized as

r(x,y) = (x,y, f (x)+g(y)). (2.0.1)

Thus

rx = (1,0, f ′(x)), ry = (0,1,g′(y)),

rxx = (0,0, f ′′(x), ryy = (0,0,g′′(y)), ryx = rxy = (0,0,0).
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Translation surfaces in Euclidean 3-space E3

Hence

E = rx · rx = 1+ f ′(x)2, F = rx · ry = f ′(x)g′(y), G = ry · ry = 1+g′(y)2.

Also

EG−F2 =
(
1+ f ′(x)2)(1+g′(y)2)− f ′(x)2g′(y)2 = 1+ f ′(x)2 +g′(y)2.

Now, we have

rx × ry =

∣∣∣∣∣∣∣∣∣
i j k

1 0 f ′(x)

0 1 g′(y)

∣∣∣∣∣∣∣∣∣=
(
− f ′(x),−g′(y),1

)
.

Thus the unit normal N is obtained as

N =
(− f ′,−g′,1)√

1+ f ′2 +g′2
.

Also

L = rxx ·N =
f ′′√

1+ f ′2 +g′2
,

M = rxy ·N = 0,

N = ryy ·N =
g′′√

1+ f ′2 +g′2
.

Therefore on substituting the values of first and second fundamental form coefficients in

(1.0.2), we obtain

H =
f ′′(1+g′2)+g′′(1+ f ′2)

2(1+ f ′2 +g′2)
. (2.0.2)

For H = 0, we have

f ′′(1+g′2)+g′′(1+ f ′2) = 0,

or
g′′

(1+g′2)
+

f ′′

(1+ f ′2)
= 0.

15



Translation surfaces in Euclidean 3-space E3

Since f and g are independently the functions of x and y alone respectively, so we have

two cases:

Case I:
1+ f ′2

f ′′
= 0 and

1+g′2

g′′
= 0,

which gives

f (x) = c1 ± ιx and g(y) = c2 ± ιy.

Thus r(x,y) = (x,y,c1x+ c2y+ c3) , which is congruent to a plane.

Case II:
f ′′

1+ f ′2
=−a and

g′′

1+g′2
= a,

where a is a non-zero constant.

Solving these two, we get

f (x) =
1
a

log |cos(ax+ c1)|+ c2

and

g(y) = c2 −
1
a

log |cos(ay+ c1)| .

Hence

z = f (x)+g(y) =
1
a
[log |cos(ax+ c1)|− log |cos(ay− c1)|]+2c2. (2.0.3)

Setting c2 = 0, we can write

z =
1
a

log |cos(ax)|− 1
a

log |cos(ay)| ,

or

z =
1
a

log
∣∣∣∣cos(ax)
cos(ay)

∣∣∣∣ . (2.0.4)

This proves the theorem.

Remark:The surface (2.0.4) is called as Scherk Surface which is the minimal surface of

the form (2.0.1). Next, we discuss the classification of affine minimal translation surface.
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Translation surfaces in Euclidean 3-space E3

Theorem 2.0.2. Let r(x,y) = (x,y,z(x,y)) be a minimal affine translation surface in Eu-

clidean 3-space. Then either z(x,y) is linear or can be written as

z(x,y) =
1
c

log

∣∣∣∣∣cos(c
√

1+a2x)
cos[c(y+ax)]

∣∣∣∣∣ , (2.0.5)

where a and c are constants and ac ̸= 0.

Proof. Let r(x,y) = (x,y, f (x)+g(y+ax)), a ̸= 0 be an affine translation surface.

Therefore

rx = (1,0, f ′(x)+ag′(y+ax)), ry = (0,1,g′(y+ax)),

rxx = (0,0, f ′′(x)+a2g′′(y+ax)), ryy = (0,0,g′′(y+ax)),

rxy = (0,0,ag′′(y+ax).

Hence

E = rx · rx = 1+( f ′+ag′)2, F = rx · ry = ( f ′+ag′)g′, G = ry · ry = 1+g′2,

where f ′ = f ′(x) and g′ = g′(y+ax).

Now

EG−F2 =
[
1+
(

f ′+ag′
)2
][

1+g′2
]
−
[
( f ′+ag′)2g′2

]
= (1+g′2)+( f ′+ag′)2(1+g′2 −g′2),

or

EG−F2 = 1+( f ′+ag′)2 +g′2. (2.0.6)

Hence, we have

N =
rx × ry

∥rx × ry∥
=

rx × ry√
EG−F2

=
(− f ′−ag′,−g′,1)√
1+( f ′+ag′)2 +g′2

.

Therefore

L = rxx.N =
f ′′+a2g′′√

1+( f ′+ag′)2 +g′2
,
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Translation surfaces in Euclidean 3-space E3

M = rxy.N =
ag′′√

1+( f ′+ag′)2 +g′2
,

N = ryy ·N =
g′′√

1+( f ′+ag′)2 +g′2
.

Now

LG−2MF+NE = ( f ′′+a2g′′)(1+g′2)−2ag′′g′( f ′+ag′)+g′′(1+ f ′2+a2g′2+2a f ′g′).

(2.0.7)

Thus from (1.0.2), H = 0 takes the following form

( f ′′+a2g′′)(1+g′2)−2ag′′g′( f ′+ag′)+g′′(1+ f ′2 +a2g′2 +2a f ′g′) = 0,

or

f ′′(1+g′2)+a2g′′+g′′+ f ′2g′′ = 0,

or

f ′′(1+g′2)+g′′(1+a2 + f ′2) = 0.

The above can be rewritten as

f ′′

1+a2 + f ′2
+

g′′

1+g′2
= 0. (2.0.8)

Differentiating (2.0.8) w.r.t. y, we get

d
d(y+ax)

(
g′′

1+g′2

)
d
dy

(y+ax) = 0,

that is
d

d(y+ax)

(
g′′

1+g′2

)
= 0. (2.0.9)

Again differentiating (2.0.8) w.r.t. x, we get

d
dx

(
f ′′

1+a2 + f ′2

)
+

d
d(y+ax)

(
g′′

1+g′2

)
d
dx

(y+ax) = 0,

or
d
dx

(
f ′′

1+a2 + f ′2

)
+a

d
d(y+ax)

(
g′′

1+g′2

)
= 0. (2.0.10)
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Translation surfaces in Euclidean 3-space E3

Using (2.0.9) in (2.0.10), we get

d
dx

(
f ′′

1+a2 + f ′2

)
= 0.

Therefore, we have
f ′′

1+a2 + f ′2
=− g′′

1+g′2
=−c,

where c is constant.

If c = 0 then f ′′ = g′′ ≡ 0 that is f = ax+ c1 and g = by+ c2

Hence r(x,y) is a plane.

If c ̸= 0 then
f ′′

1+a2 + f ′2
=−c,

which gives

f (x) =
log
∣∣∣cos

(√
a2 +1(cx+ k1)

)∣∣∣
c

+ k2,

where k1 and k2 are constants.

Setting constants feasibly, we get

f (x) =
log
∣∣∣cos(c

√
1+a2x)

∣∣∣
c

.

Now for
g′′

1+g′2
= c,

which gives

g(y+ax) =
k2 − log |cos(c(y+ax)+ k1)|

c
.

Again setting constants feasibly, we get

g(y+ax) =− log |cos(c(y+ax)) |
c

.

Therefore

f (x)+g(y+ax) =
1
c

log

∣∣∣∣∣cos(c
√

1+a2x)
cos(c(y+ax))

∣∣∣∣∣ .
That proves the result.
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Translation surfaces in Euclidean 3-space E3

Theorem 2.0.3. Let S be a translation surface with constant Gaussian curvature K in

3-dimensional Euclidean space E3. Then S is congruent to a cylinder.

Proof. In E3, by a transformation the translation surface S can be written as

z = g(x)−h(y).

That is

r(x,y) = (x,y,g(x)−h(y)). (2.0.11)

So

rx = (1,0,g′(x)), ry = (0,1,−h′(y))

and

rxx = (0,0,g′′(x)), ryy = (0,0,−h′′(y)), rxy = (0,0,0).

Now we calculate the coefficients of first and second fundamental form as

E = rx · rx = 1+g′(x)2, F = rx · ry = g′(x)h′(y), G = ry · ry = 1+h′(y)2. (2.0.12)

Therefore

EG−F2 = 1+g′(x)2 +h′(y)2. (2.0.13)

Now

rx × ry =

∣∣∣∣∣∣∣∣∣
i j k

1 0 g′(x)

0 1 −h′(y)

∣∣∣∣∣∣∣∣∣= (−g′(x),h′(y),1).

So, the unit normal vector is given as

N =
rx × ry

||rx × ry||
=

(−g′(x),h′(y),1)√
1+g′(x)2 +h′(y)2

.

Therefore,

L= rxx ·N=
g′′(x)√

1+g′(x)2 +h′(y)2
, M = rxy ·N= 0, N = ryy ·N=

−h′′(y)√
1+g′(x)2 +h′(y)2

.

(2.0.14)
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Now

LN −M2 =
−g′′(x)h′′(y)

1+g′(x)2 +h′(y)2 .

Substituting (2.0.12) and (2.0.14) in (1.0.2), we get

K =
−g′′(x)h′′(y)

(1+g′(x)2 +h′(y)2)2 . (2.0.15)

Let K = c(constant) and g′′(x) ̸= 0, then from (2.0.15), we have

h′′(y)
(1+g′(x)2 +h′(y)2)2 =

c
−g′′(x)

.

Differentiating w.r.t. y on both sides, we get(
1+g′(x)2 +h′(y)2)2

h′′′(y)−4h′(y)h′′(y)2 = 0. (2.0.16)

Similarly let h′′(y) ̸= 0, then from (2.0.15), we have

g′′(x)

(1+g′(x)2 +h′(y)2)
2 =

c
−h′′(y)

.

Differentiating w.r.t. x on both sides, we get

(1+g′(x)2 +h′(y)2)2g′′′(x)−4g′(x)g′′(x)2 = 0. (2.0.17)

Comparing (2.0.16) and (2.0.17), we get

h′′′(y)
h′(y)h′′(y)2 =

g′′′(x)
g′(x)g′′(x)2 ,

which is not possible as f (x) and g(y) are independent.

Hence, g′′(x) = 0 or h′′(y) = 0.

Let g′′(x) = 0, we get

g(x) = ax+b, a,b ∈ R.

Therefore from (2.0.11), we have

r(x,y) = (x,y,ax+b−h(y)) = (0,y,b−h(y))+ x(1,0,a),

which is a cylinder.
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Theorem 2.0.4. Let S be a translation surface with constant mean curvature H ̸= 0 in

3-dimensional Euclidean space E3. Then S is congruent to the following surface

r(x,y) =

(
x,y,−

√
1+a2

2H
×
√

1−4H2x2 −ay

)
, a ∈ R.

Proof. Let S be the surface with constant mean curvature H ̸= 0.

Substituting the values of fundamental coefficients from equation (2.0.12) and (2.0.14) in

(1.0.2), we have

H =
g′′(x)(1+h′(y)2)−h′′(y)(1+g′(x)2)

2
√

1+g′(x)2 +h′(y)2(1+g′(x)2 +h′(y)2)
,

or

H =
g′′(x)(1+h′(y)2 −h′′(y))(1+g′(x)2)

2(1+g′(x)2 +h′(y)2)
3
2

. (2.0.18)

Since H is constant, therefore H ′ = 0.

Therefore, (2.0.18) can be written as

2H =
[
g′′(x)(1+h′(y)2)−h′′(y)(1+g′(x)2)

][
1+g′(x)2 +h′(y)2]− 3

2 .

Differentiating w.r.t. x and taking g = g(x) and h = h(y), we have

0 =
[
g′′′(1+h′2)−2g′g′′h′′

][
1+g′2 +h′2

]− 3
2 +
[
g′′(1+h′2)−h′′(1+g′2)

][
−3(1+g′2 +h′2)−

5
2 g′g′′

]
=
[
g′′′(1+h′2)−2g′g′′h′′

][
1+g′2 +h′2

]− 3
2 −3g′g′′

[
g′′(1+h′2)−h′′(1+g′2)

]
[
1+g′2 +h′2

]− 5
2

=
[
g′′′(1+h′2)−2g′g′′h′′

][
1+g′2 +h′2

]− 3
2

−

[
6g′g′′

[
g′′(1+h′2)−h′′(1+g′2

][
1+g′2 +h′2

]−1

2 [1+g′2 +h′2]
3
2

]
.

Using (2.0.18), we get

=
[
g′′′(1+h′2)−2g′g′′h′′

][
1+g′2 +h′2

]− 3
2 −6Hg′g′′

[
1+g′2 +h′2

]−1
,
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that is [
g′′′(1+h′2)−2g′g′′h′′

][
1+g′2 +h′2

]− 1
2 = 6Hg′g′′. (2.0.19)

Differentiating (2.0.19) w.r.t. y, we get

0 =
[
2h′h′′g′′′−2g′g′′h′′′

][
1+g′2 +h′2

]− 1
2 − 1

2
[
1+g′2 +h′2

]− 3
2

×2h′h′′
[
g′′′(1+h′2)−2g′g′′h′′

]
.

Using (2.0.19), we get

=
[
2h′h′′g′′′−2g′g′′h′′′

][
1+g′2 +h′2

]− 1
2 −6Hg′g′′h′h′′

[
1+g′2 +h′2

]−1
,

or [
2h′h′′g′′′−2g′g′′h′′′

][
1+g′2 +h′2

] 1
2 −6Hg′g′′h′h′′ = 0. (2.0.20)

Assume g′′(x) ̸= 0 and h′′(y) ̸= 0.

Dividing (2.0.20) both sides by g′g′′h′h′′, we get[
g′′′

g′g′′
− h′′′

h′h′′

][
1+g′2 +h′2

] 1
2 = 3H. (2.0.21)

Differentiating (2.0.21) w.r.t. x, we get

0 =

[
g′′′

g′g′′

]′
[1+g′2 +h′2]

1
2 +

[
g′′′

g′g′′

]
1
2
[
1+g′2 +h′2

]− 1
2 2g′g′′

− 1
2

h′′′

h′h′′
[
1+g′2 +h′2

]− 1
2 2g′g′′

=

[
g′′′

g′g′′

]′ [
1+g′2 +h′2

] 1
2 +
[
1+g′2 +h′2

]− 1
2 g′g′′

[
g′′′

g′g′′
− h′′′

h′h′′

]
=

[
g′′′

g′g′′

]′ [
1+g′2 +h′2

] 3
2 +

[1+g′2 +h′2]
1
2

[1+g′2 +h′2]
g′g′′

[
g′′′

g′g′′
− h′′′

h′h′′

]
.

Using (2.0.21), we get[
g′′′(x)

g′(x)g′′(x)

]′
[1+g′(x)2 +h′(y)2]

3
2 +3Hg′(x)g′′(x) = 0. (2.0.22)

So g′′(x) ̸= 0 and h′′(y) ̸= 0,

implies that H = 0, which is contradiction as H ̸= 0.
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Hence g′′(x) = 0 or h′′(y) = 0.

Assume h′′(y) = 0. Let h(y) = ay, where a is constant.

Then from (2.0.18), we have

H =
g′′(x)(1+a2)

2 [1+g′(x)2 +a2]
3
2
,

or

g′′(x)(1+a2) = 2H
[
1+g′(x)2 +a2] 3

2 .

Solving this equation, we get

g(x) =−
√

1+a2

2H

√
1−4H2(x+ c1)2 + c2, c1,c2 ∈ R.

Therefore, the surface is

z =−
√

1+a2

2H

√
1−4H2(x+ c1)2 + c2 −ay.

This proves the theorem.

Theorem 2.0.5. Let r(x,y) = (x,y, f (x)+g(y+ax)) be an affine transation surface with

non-zero constant mean curvature H, then r(x,y) is of the form

r(x,y) =
(

x,y, ±
√

1+b2

2H

√
1−4H2x2 −abx+g(y+ax)+ c2

)
,

where a,b,c1 and c2 are constants.

Proof. Let S be the affine translation surface with non-zero constant mean curvature in

E3.

Then on substituting the values from (2.0.6) and (2.0.7) in (1.0.2), we get

H =
f ′′
(
1+g′2

)
+g′′

(
1+a2 + f ′2

)
2 [1+( f ′+ag′)2 +g′2]

3
2

. (2.0.23)

It is clear that f ′′2 +g′′2 ̸= 0. If f ′′ = 0 that is f ′ = b is constant, (2.0.23) becomes

g′′
(
1+a2 +b2)= 2H

[
1+(b+ag′)2 +g′2

] 3
2 ,
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or

g′′ =
2H

1+a2 +b2

[
1+b2 +2abg′+(1+a2)g′2

] 3
2

=
2H
(
1+a2) 3

2

1+a2 +b2

[
g′2 +

2ab
1+a2 g′+

1+b2

1+a2 −
a2b2

(1+a2)2 +
a2b2

(1+a2)2

] 3
2

=
2H(1+a2)

3
2

1+a2 +b2

[(
g′+

ab
1+a2

)2

+
1

1+a2

(
1+b2 − a2b2

1+a2

)] 3
2

=
2H
(
1+a2) 3

2

1+a2 +b2

[(
g′+

ab
1+a2

)2

+
1

1+a2

(
1+a2 +b2

1+a2

)] 3
2

=
2H(1+a2)

3
2

1+a2 +b2

[(
g′+

ab
1+a2

)2

+
1+a2 +b2

(1+a2)
2

] 3
2

. (2.0.24)

Putting

A2 =
1+a2 +b2

(1+a2)2 and B =
2H
(
1+a2) 3

2

1+a2 +b2 ,

that is

g′′ = B

[(
g′+

ab
1+a2

)2

+A2

] 3
2

,

or

dg′

d(y+ax)
= B

[(
g′+

ab
1+a2

)2

+A2

] 3
2

,

or
dg′[(

g′+ ab
1+a2

)2
+A2

] 3
2
= Bd(y+ax). (2.0.25)

For solving (2.0.25), let x = g′+ ab
1+a2 , then dx = dg′.

Hence on integrating, we get ∫ dx

(x2 +A2)
3
2
= B(y+ax).
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We have to find

d
dx

(
x

(x2 +A2)
1
2

)
=

(x2 +A2)
1
2 ·1− x

2(x
2 +A2)−

1
2 ·2x

(x2 +A2)

=
(x2 +A2)− x2

(x2 +A2)
3
2

=
A2

(x2 +A2)
3
2
.

That is
A2

(x2 +A2)
3
2
=

d
dx

[
x

(x2 +A2)1
2

]
,

or ∫ dx

(x2 +A2)
3
2
=

x

A2
√

x2 +A2
,

or
g′+ ab

1+a2

A2

√(
g′+ ab

1+a2

)2
+A2

= B(y+ax)+ c1.

This gives

g′+
ab

1+a2 =± A3B(y+ax)√
1−A4B2(y+ax)2

. (2.0.26)

Where c1 is an integral constant, for simplicity we choose c1 = 0.

Therefore solving (2.0.26), we obtain

g(y+ax) =± 1
AB

√
1−A4B2(y+ax)2 − ab

1+a2 (y+ax)+ c2

=±
√

1+a2 +b2

2H
√

1+a2

√
1− 4H2

1+a2 (y+ax)2 − ab
1+a2 (y+ax)+ c2.

That is

g(y+ax) =±
√

1+a2 +b2

2H(1+a2)

√
1+a2 −4H2(y+ax)2 − ab

1+a2 (y+ax)+ c2,

where c2 is an integral contant.

Now if f ′′ ̸= 0, then from (2.0.23), we have

f ′′(1+g′2)+g′′(1+a2 + f ′2) = 2H
[
1+( f ′+ag′)2 +g′2

] 3
2 . (2.0.27)
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Differentiating (2.0.27) w.r.t. y, we have

2 f ′′g′g′′+(1+a2 + f ′2)g′′′ = 3H
[
1+( f ′+ag′)2 +g′2

] 1
2
[
2( f ′+ag′)ag′′+2g′g′′

]
,

that is

2 f ′′g′g′′+(1+a2 + f ′2)g′′′ = 6H
[
1+( f ′+ag′)2 +g′2

] 1
2 (a f ′g′′+a2g′g′′+g′g′′).

(2.0.28)

Differentiating (2.0.27) w.r.t. x, we have

f ′′′(1+g′2)+2a f ′′g′g′′+ag′′′+a3g′′′+2 f ′ f ′′g′′+a f ′2g′′′

= 3H[1+( f ′+ag′)2 +g′2]
1
2 [2( f ′+ag′)( f ′′+a2g′′)+2ag′g′′]

= 6H
[
1+( f ′+ag′)2 +g′2

] 1
2
[

f ′ f ′′+a2 f ′g′′+ag′ f ′′+a3g′g′′+ag′g′′
]
,

that is

f ′′′(1+g′2)+2 f ′ f ′′g′′+2a f ′′g′g′′+ag′′′+a3g′′′+a f ′2g′′′

= 6H
[
1+( f ′+ag′)2 +g′2

] 1
2
[

f ′ f ′′+a2 f ′g′′+ag′ f ′′+a3g′g′′+ag′g′′
]
,

or

f ′′′(1+g′2)+2 f ′ f ′′g′′+2a f ′′g′g′′+a(1+a2 + f ′2)g′′′

= 6H
[
1+( f ′+ag′)2 +g′2

] 1
2
[
a(a f ′g′′+a2g′g′′+g′g′′)+ f ′ f ′′+ag′ f ′′

]
. (2.0.29)

Multiplying (2.0.28) both sides by a and comparing with (2.0.29), we get

f ′′′(1+g′2)+2 f ′ f ′′g′′ = 6HD( f ′ f ′′+ag′ f ′′), where D =
[
1+( f ′+ag′)2 +g′2

] 1
2 .

(2.0.30)

Using (2.0.24), we get

g′′ =
[

2HD2 − f ′′(1+g′2)
1+a2 + f ′2

]
.

Equation (2.0.30) becomes

f ′′′(1+g′2)+2 f ′ f ′′
[

2HD3 − f ′′(1+g′2)
1+a2 + f ′2

]
= 6HD( f ′ f ′′+ag′ f ′′),
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or

f ′′′(1+g′2)(1+a2 + f ′2)+2 f ′ f ′′
[
2HD3 − f ′′(1+g′2)

]
= 6HD( f ′ f ′′+ag′ f ′′)(1+a2 + f ′2),

or

f ′′′(1+g′2)(1+a2 + f ′2)−2 f ′ f ′′2(1+g′2)

= 6HD( f ′ f ′′+ag′ f ′′)(1+a2 + f ′2)−4H f ′ f ′′D ·D2

= 6HD( f ′ f ′′+ag′ f ′′)(1+a2 + f ′2)−4HD f ′ f ′′
[
1+( f ′+ag′)2 +g′2

]
= 2HD

[
3 f ′ f ′′+3 f ′ f ′′a2 +3 f ′3 f ′′+3ag′ f ′′+3a3g′ f ′′+3ag′ f ′2 f ′′

]
[
−2 f ′ f ′′(1+ f ′2 +a2g′2 +2a f ′g′+g′2)

]
= 2HD

[
3 f ′ f ′′+3 f ′ f ′′a2 +3 f ′3 f ′′+3ag′ f ′′+3a3g′ f ′′+3ag′ f ′2 f ′′

]
[
−2 f ′ f ′′−2 f ′3 f ′′−2a2 f ′ f ′′g′2 −4a f ′2 f ′′g′−2 f ′ f ′′g′2

]
= 2HD

[
f ′ f ′′+3a2 f ′ f ′′+ f ′3 f ′′+(3a f ′′+3a3 f ′′−a f ′2 f ′′)g′−2 f ′ f ′′(1+a2)g′2

]
.

Squaring both sides and put the value of D, we get[
f ′′′(1+g′2)(1+a2 + f ′2)−2 f ′ f ′′2(1+g′2)

]2
= 4H2 [1+( f ′+ag′)2 +g′2

]
[

f ′ f ′′+3a2 f ′ f ′′+ f ′3 f ′′+(3a f ′′+3a3 f ′′−a f ′2 f ′′)g′−2 f ′ f ′′(1+a2)g′2
]2
.

(2.0.31)

The coefficient of highest order 6 of g′ in above equation (2.0.31) is 16H2(1+a2)3 f ′2 f ′′2.

Therefore f ′′ ̸= 0 means that g′ is a constant.

Put g′ = b, (2.0.23) becomes

(1+b2) f ′′ = 2H
[
1+b2 +(ab+ f ′)2] 3

2 . (2.0.32)

On solving equation (2.0.32), we get

f (x) =±
√

1+b2

2H

√
1−4H2x2 −abx+ c3,

which proves the theorem.
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Chapter 3
Translation surfaces in Minkowski 3-space

E3
1

In this chapter, we discuss the translation surfaces with zero and non-zero constant mean

curvature and non-zero constant Gaussian curvature in E3
1 and affine translation surface

with zero mean curvature. This chapter is a survey of the articles in [4, 8].

Theorem 3.0.1. Let S be a translation surface with constant Gaussian curvature K in

3-dimensional Minkowski space E3
1 . Then S is congruent to a cylinder, so K = 0.

Proof. In Minkowski space E3
1 , by a transformation in E3

1 the translation surface S can be

written as

z = g(x)−h(y),

or

x = g(y)−h(z).

Accordingly, we have

r(x,y) = (x,y,g(x)−h(y)), (3.0.1)
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1

or

r(y,z) = (g(y)−h(z),y,z). (3.0.2)

Then for (3.0.1), we have

E = rx · rx = 1−g′(x)2, F = rx · ry = g′(x)h′(y), G = ry · ry = 1−h′(y)2.

Hence

EG−F2 = 1−g′(x)2 −h′(y)2. (3.0.3)

Therefore

N =
(−g′(x),h′(y),1)√
1−g′(x)2 −h′(y)2

.

Substituting the above found E,F,G and L,M,N in (1.0.2), we get

K =
−g′′(x)h′′(y)

(1−g′(x)2 −h′(y)2)2 . (3.0.4)

Similarly for surface (3.0.2), we have

ry =(g′(y),1,0), rz =(−h′(z),0,1), ryy =(g′′(y),0,0), rzz =(−h′′(z),0,0), ryz =(0,0,0).

Therefore

E = ry.ry = g′(y)2 +1, F = ry.rz =−h′(z)g′(y), G = rz.rz = h′(z)2 −1.

So

EG−F2 = (1+g′(y)2)(h′(z)2 −1)−h′(z)2g′(y)2 = h′(z)2 −g′(y)2 −1.

Now

ry × rz = (1,−g′(y),h′(z)).

So

N =
(1,−g′(y),h′(z))√
h′(y)2 −g′(z)2 −1

.

Therefore

L= ryy ·N=
g′′(y)

(h′(z)2 −g′(y)2 −1)
1
2
, M = ryz ·N= 0, N = rzz ·N=

−h′′(z)

(h′(z)2 −g′(y)2 −1)
1
2
.
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1

On using these values of L,M,N in (1.0.2), we get

K =
−g′′(y)h′′(z)

(h′(z)2 −g′(y)2 −1)2 . (3.0.5)

Now if K is constant, then from (3.0.4) and (3.0.5), we have g′′ = 0 or h′′ = 0, which is

again not possible like as in theorem (2.0.3). So we again get a contradiction. Hence the

surface is a cylinder.

Theorem 3.0.2. Let S be a translation surface with constant mean curvature H ̸= 0 in

3-dimensional Minkowski space E3
1 . Then

(i) if S is spacelike, it is congruent to the following surfaces or a part in E3
1 :

(a)

z =

√
1−a2

2H

√
1+4H2x2 −ay, |a|< 1,

or

(b)

x = ay−
√

a2 +1
2H

√
4H2z2 −1,

or

(c)

x =

√
a2 −1
2H

√
1+4H2y2 −az, |a|> 1;

(ii) if S is timelike, it is congruent to the following surfaces or a part in E3
1 :

(d)

z =−
√

1−a2

2H

√
4H2x2 −1−ay, |a|< 1,

or

(e)

z =

√
a2 −1
2H

√
1−4H2x2 −ay, |a|> 1,
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1

or

(f)

x = ay+

√
1+a2

2H

√
1+4H2z2,

or

(g)

x =−
√

a2 −1
2H

√
4H2y2 −1−az, |a|> 1,

or

(h)

x =

√
1−a2

2H

√
1−4H2y2 −az, |a|< 1.

Proof. Let S be a surface with constant mean curvature H ̸= 0 in Minkowski space E3
1 .

Let the translation surface in E3
1 be

r(x,y) = (x,y,g(x)−h(y)), (3.0.6)

or

r(y,z) = (g(y)−h(z),y,z). (3.0.7)

For surface (3.0.6), we have calculated the the value of E,F,G,L,M,N and EG−F2 in

(2.0.12), (2.0.14) and (2.0.13).

On substituting these values in (1.0.2), we get

H =
−g′′(1−h′2)+h′′(1−g′2)

2
√

1−g′2 −h′2(1−g′2 −h′2)
,

where g = g(x) and h = h(y);

or

H =
g′′(1−h′2)−h′′(1−g′2)

2 [1−g′2 −h′2]
3
2

. (3.0.8)

Assume in (3.0.8), g′′(x) ̸= 0 and h′′(y) ̸= 0, we have

2H =
[
g′′(1−h′2)−h′′(1−g′2)

][
1−g′2 −h′2

]− 3
2 .
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1

Differentiating w.r.t. x, we get

0 =
[
g′′′(1−h′2)+2g′g′′h′′

][
1−g′2 −h′2

]− 3
2 +
[
g′′(1−h′2)−h′′(1−g′2)

][
−3

2(1−g′2 −h′2)−
5
2 (−2g′g′′)

]
=
[
g′′′(1−h′2)+2g′g′′h′′

][
1−g′2 −h′2

]− 3
2

+3g′g′′
[
g′′(1−h′2)−h′′(1−g′2)(1−g′2 −h′2)

]− 5
2 .

Using (3.0.8), we get[
g′′′(1−h′2)+2g′g′′h′′

][
1−g′2 −h′2

]− 3
2 +6g′g′′H

[
1−g′2 −h′2

]−1
= 0,

or [
g′′′(1−h′2)+2g′g′′h′′

][
1−g′2 −h′2

]− 1
2 =−6Hg′g′′. (3.0.9)

Differentiating (3.0.9) w.r.t. y, we get

0 =
[
−2g′′′h′h′′+2g′g′′h′′′

][
1−g′2 −h′2

]− 1
2 − 1

2
[
1−g′2 −h′2

]− 3
2[

−2h′h′′
][

g′′′(1−h′2)+2g′g′′h′′
]
,

that is [
−g′′′h′h′′+g′g′′h′′′

][
1−g′2 −h′2

] 1
2 = 3Hg′g′′h′h′′.

Dividing both sides by g′g′′h′h′′, we get

3H =

[
−g′′′

g′g′′
+

h′′′

h′h′′

]
[1−g′2 −h′2]

1
2 . (3.0.10)

Differentiating (3.0.10) w.r.t x, we have

0 =

[
−g′′′

g′g′′

]′
[1−g′2 −h′2]

1
2 −
[
−g′′′

g′g′′

]
1
2
[1−g′2 −h′2]−

1
2 2g′g′′

− 1
2

h′′′

h′h′′
[1−g′2 −h′2]−

1
2 2g′g′′

=

[
−g′′′

g′g′′

]′
[1−g′2 −h′2]

1
2 − [1−g′2 −h′2]−

1
2 g′g′′

[
−g′′′

g′g′′
+

h′′′

h′h′′

]
=

[
−g′′′

g′g′′

]′
[1−g′2 −h′2]

3
2 − [1−g′2 −h′2]

1
2

[1−g′2 −h′2]
g′g′′

[
−g′′′

g′g′′
+

h′′′

h′h′′

]
.
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1

Using (3.0.10), we get[
−g′′′(x)

g′(x)g′′(x)

]′
[1−g′(x)2 −h′(y)2]

3
2 +3Hg′(x)g′′(x) = 0. (3.0.11)

Equation (3.0.11) yields H = 0, which is a contradiction to the assumption that H ̸= 0.

Hence either g′′(x) = 0 or h′′(y) = 0.

So, for the surface (3.0.6), by a transformation in E3
1 we can assume h′′(y) = 0 so h(y) =

ay. Hence from (3.0.8), we have

g′′(x)(1−a2) = 2H(1−a2 −g′(x)2)
3
2 , (3.0.12)

or

g′′(x)(1−a2) = 2H(g′(x)2 −1−a2). (3.0.13)

Solving (3.0.12) and (3.0.13), we obtain

g(x) =

√
1−a2

2H

√
1+4H2(x+ c1)2 + c2, c1,c2 ∈ R, |a|< 1,

the surface is spacelike and congruent to the surface (a) given by the theorem.

g(x) =−
√

1−a2

2H

√
4H2(x+ c1)2 −1+ c2, c1,c2 ∈ R, |a|< 1,

the surface is timelike and is congruent to the surface (d) given by the theorem;

and

g(x) =
a2 −1

2H

√
1−4H2(x+ c1)2 + c2, c1,c2 ∈ R, |a|> 1,

the surface is timelike and congruent to the surface (e) given by the theorem.

Now for surface (3.0.7), let g = g(y) and h = h(z).

The values of E,F,G,L,M,N and EG−F2 have been calculated in (2.0.12),(2.0.14) and

(2.0.13).

Hence

H =
g′′(h′2 −1)−0+(1+g′2)(−h′′)

2(h′2 −g′2 −1)(h′2 −g′2 −1)
1
2
,
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1

or

H =
g′′(h′2 −1)−h′′(g′2 +1)

2|h′2 −g′2 −1| 3
2

, (3.0.14)

or

2H = [g′′(h′2 −1)−h′′(g′2 +1)][h′2 −g′2 −1]−
3
2 .

Differentiating w.r.t. y and assume g′′(y) ̸= 0 and h′′(z) ̸= 0, we get

0 =
[
g′′′(h′2 −1)−2g′g′′h′′

][
h′2 −g′2 −1

]− 3
2 +
[
g′′(h′2 −1)−h′′(g′2 +1)

][
−3

2
(h′2 −g′2 −1)−

5
2 (−2g′g′′)

]
=
[
g′′′(h′2 −1)−2g′g′′h′′

]
[h′2 −g′2 −1]−

3
2 +6g′g′′

[
g′′(h′2 −1)−h′′(g′2 +1)

2(h′2 −g′2 −1)
3
2

]
[
h′2 −g′2 −1

]−1
.

Using (3.0.14), we get

0 =
[
g′′′(h′2 −1)−2g′g′′h′′

][
h′2 −g′2 −1

]− 3
2 +6Hg′g′′

[
h′2 −g′2 −1

]−1
,

or [
g′′′(h′2 −1)−2g′g′′h′′

][
h′2 −g′2 −1

]− 1
2 =−6Hg′g′′. (3.0.15)

Differentiating (3.0.15) w.r.t z, we get

0 =
[
2g′′′h′h′′−2g′g′′h′′′

][
h′2 −g′2 −1

]− 1
2 − 1

2
[
h′2 −g′2 −1

]− 3
2
[
2h′h′′

]
[
g′′′(h′2 −1)−2g′g′′h′′

]
.

Using (3.0.15), we get

0 =
[
2g′′′h′h′′−2g′g′′h′′′

][
h′2 −g′2 −1

]− 1
2 +6Hg′g′′h′h′′

[
h′2 −g′2 −1

]−1
,

or [
g′′′h′h′′−g′g′′h′′′

][
h′2 −g′2 −1

] 1
2 =−3Hg′g′′h′h′′.
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1

Dividing both sides by g′g′′h′h′′, we get

−3H =

[
g′′′

g′g′′
− h′′′

h′h′′

]
[h′2 −g′2 −1]

1
2 . (3.0.16)

Differentiating (3.0.16) w.r.t. y, we get

0 =

[
g′′′

g′g′′

]′
[h′2 −g′2 −1]

1
2 +

[
g′′′

g′g′′

]
1
2
[h′2 −g′2 −1]−

1
2 [−2g′g′′]

− 1
2

h′′′

h′h′′
[h′2 −g′2 −1]−

1
2 [−2g′g′′]

=

[
g′′′

g′g′′

]′
[h′2 −g′2 −1]

1
2 − [h′2 −g′2 −1]−

1
2 g′g′′

[
g′′′

g′g′′
− h′′′

h′h′′

]
=

[
g′′′

g′g′′

]′
[h′2 −g′2 −1]

1
2 − [h′2 −g′2 −1]

1
2

[h′2 −g′2 −1]
g′g′′

[
g′′′

g′g′′
− h′′′

h′h′′

]
.

Using (3.0.16), we get[
g′′′(y)

g′(y)g′′(y)

]
[h′(z)2 −g′(y)2 −1]

1
2 +3Hg′(y)g′′(y) = 0. (3.0.17)

Equation (3.0.17) yields H = 0, which is a contradiction to the assumption that H ̸= 0. So

g′′(y) = 0 or h′′(z) = 0 and hence for surface (3.0.7), we let g′′(y) = 0.

Therefore, by a transformation in E3
1 , we assume g(y) = ay. Then from (3.0.14), we have

−h′′(z)(1+a2) = 2H(h′(z)2 −a2 −1)
3
2 , (3.0.18)

or

−h′′(z)(1+a2) = 2H(a2 +1−h′(z)2)
3
2 . (3.0.19)

Solving (3.0.18) and (3.0.19), we obtain

h(z) =

√
1+a2

2H

√
4H2(z+ c1)2 −1+ c2, c1,c2 ∈ R,

the surface is spacelike and congruent to the surface (b) of the theorem;

h(z) =−
√

1+a2

2H

√
4H2(z+ c1)2 +1+ c2, c1,c2 ∈ R,
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1

the surface is timelike and congruent to the surface ( f ) given by the theorem.

Now assume for surface (3.0.7), h′′(z) = 0. So let h(z) = az.

Then by (3.0.14), we have

g′′(y)(a2 −1) = 2H(a2 −1−g′(y)2)
3
2 , (3.0.20)

or

g′′(y)(a2 −1) = 2H(g′(y)2 +1−a2)
3
2 . (3.0.21)

Solving (3.0.20) and (3.0.21), we obtain

g(y) =

√
a2 −1
2H

√
1+4H2(y+ c1)2 + c2, c1,c2 ∈ R, |a|> 1,

the surface is spacelike and congruent to the surface (c) given by the theorem;

g(y) =−
√

a2 −1
2H

√
4H2(y+ c1)2 −1+ c2, c1,c2 ∈ R, |a|> 1,

the surface is timelike and congruent to the surface (g) given by the theorem;

g(y) =

√
1−a2

2H

√
1−4H2(y+ c1)2 + c2, c1,c2 ∈ R, |a|< 1,

the surface is timelike and congruent to the surface (h) given by the theorem.

Theorem 3.0.3. Let r(x,y) = (x,y,z(x,y)) be a minimal affine translation surface in

Mikowski space E3
1 . Then either z(x,y) is linear or can be written as

z(x,y) =
1
c

log

∣∣∣∣∣cosh
[
c
√

1+a2x
]

cosh[c(y+ax)]

∣∣∣∣∣ (3.0.22)

Proof. Let r(x,y) = (x,y, f (x)+g(y+ax)), a ̸= 0 be the minimal affine translation surface

in E3
1 .
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1

Therefore

rx = (1,0, f ′(x)+ag′(y+ax)), ry = (0,1,g′(y+ax)),

rxx = (0,0, f ′′(x)+a2g′′(y+ax)), ryy = (0,0,g′′(y+ax)),

rxy = (0,0,ag′′(y+ax).

Now

E = 1− ( f ′+ag′)2, F =−( f ′+ag′)g′, G = 1−g′2,

where f = f (x) and g = g(y+ax).

Hence

EG−F2 =
[
1− ( f ′+ag′)2][1−g′2

]
+
[
( f ′+ag′)2g′2

]
= (1−g′2)− ( f ′+ag′)2(1+g′2 −g′2)

= 1− ( f ′+ag′)2 −g′2.

Now

rx × ry = (−( f ′+ag′),−g′,1).

So

N =
(−( f ′+ag′),−g′,1)√

1− ( f ′+ag′)2 −g′2
.

Hence

L = rxx ·N =
−( f ′′+a2g′′)√

1− ( f ′+ag′)2 −g′2
,

M = rxy ·N =
−ag′′√

1− ( f ′+ag′)2 −g′2
,

N = ryy ·N =
−g′′√

1− ( f ′+ag′)2 −g′2
.
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1

Since the surface is minimal, so H = 0.

On substituting the values of fundamental coefficients in (1.0.2), we get

0 =−( f ′′+a2g′′)(1−g′2)−2ag′′g′( f ′+ag′)−g′′(1− f ′2 −a2g′2 −2a f ′g′)

=− f ′′(1−g′2)−a2g′′+a2g′2g′′−2a f ′g′g′′−2a2g′2g′′−g′′

+ f ′2g′′+a2g′2g′′+2a f ′g′g′′

=− f ′′(1−g′2)−g′′(a2 +1− f ′2).

That is
f ′′

1+a2 − f ′2
+

g′′

1−g′2
= 0. (3.0.23)

Differentiating (3.0.23) w.r.t. y, we get

d
d(y+ax)

(
g′′

1−g′2

)
d
dy

(y+ax) = 0,

or
d

d(y+ax)

(
g′′

1−g′2

)
= 0. (3.0.24)

Now differentiating (3.0.23) w.r.t. x, we get

d
dx

(
f ′′

1+a2 − f ′2

)
+

d
d(y+ax)

(
g′′

1−g′2

)
d
dx

(y+ax) = 0,

or
d
dx

(
f ′′

1+a2 − f ′2

)
+a

d
d(y+ax)

(
g′′

1−g′2

)
= 0. (3.0.25)

Using (3.0.24) in (3.0.25), we get

d
dx

(
f ′′

1+a2 − f ′2

)
= 0.

Therefore, we have
f ′′

1+a2 − f ′2
=− g′′

1−g′2
=−c,

where c is constant.

If c = 0, then f ′′ = g′′ ≡ 0 i.e. r(x,y) is a plane.
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1

Now if c ̸= 0, then we have the following system of differential equations

f ′′

1+a2 − f ′2
=−c (3.0.26)

and
g′′

1−g′2
= c. (3.0.27)

On solving (3.0.26) (3.0.27) respectively, we get

f (x) =
1
c

log
∣∣∣2cosh

[
c
√

1+a2x
]∣∣∣ (3.0.28)

g(y+ax) =−1
c

log |2cosh[c(y+ax)]| . (3.0.29)

Adding (3.0.28) and (3.0.29), we have

f (x)+g(y+ax) =
1
c

log

∣∣∣∣∣cosh
[
c
√

1+a2x
]

cosh[c(y+ax)]

∣∣∣∣∣ .
Hence the theorem is proved.
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Chapter 4
Translation surfaces in Hyperbolic 3-space

H3

Introduction

Till now we have discussed the translation surfaces with zero and non-zero constant mean

curvature in Euclidean 3-space E3 and in Minkowski’s 3-space E3
1. Now in this chapter

we consider minimal translation surfaces in three-dimensional hyperbolic space H3. This

chapter is a survey of the article in [7].

Theorem 4.0.1. There are no minimal surfaces in H3 that are translation surfaces of type

I as defined in Eq. 1.0.4.

Proof. To prove this theorem, we assume that S is a translation surface of type I given by

the parametrization (1.0.4). From (2.0.2), we know that

He =
1
2
(1+g′2) f ′′+(1+ f ′2)g′′

(1+ f ′2 +g′2)
3
2

.

Let us now calculate N3,
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let the surface be

r(x,y) = (x,y, f (x)+g(y)),

we have

rx = (1,0, f ′), rxx = (0,0, f ′′), ry = (0,1,g′), ryy = (0,0,g′′), rxy = (0,0,0).

Therefore

rx × ry =

∣∣∣∣∣∣∣∣∣
i j k

1 0 f ′

0 1 g′

∣∣∣∣∣∣∣∣∣= i(− f ′)− j(g′)+ k(1),

that is

rx × ry = (− f ′,−g′,1).

Implies

∥rx × ry∥=
√

1+ f ′2 +g′2.

Now

N =
rx × ry

∥rx × ry∥
=

(− f ′,−g′,1)√
1+ f ′2 +g′2

.

Hence

N3 =
1√

1+ f ′2 +g′2
.

Now from equation (1.0.3), we have

H = ( f +g)

[
(1+g′2) f ′′+(1+ f ′2)g′′

2(1+ f ′2 +g′2)
3
2

]
+

1√
1+ f ′2 +g′2

.

If the surface is minimal that is H = 0 on S, we have

0 = ( f +g)

[
(1+g′2) f ′′+(1+ f ′2)g′′

(1+ f ′2 +g′2)
3
2

]
+

2√
1+ f ′2 +g′2

,

that is
1√

1+ f ′2 +g′2

[
( f +g)

(1+g′2) f ′′+(1+ f ′2)g′′

1+ f ′2 +g′2
+2
]
= 0,
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or

( f +g)
[
(1+g′2) f ′′+(1+ f ′2)g′′

]
+2
(
1+ f ′2 +g′2

)
= 0.

Dividing on both sides by (1+g′2)(1+ f ′2), we get

( f +g)
[

f ′′

1+ f ′2
+

g′′

1+g′2

]
+

2(1+ f ′2 +g′2)
(1+ f ′2)(1+g′2)

= 0,

that is

( f +g)
[

f ′′

1+ f ′2
+

g′′

1+g′2

]
=

−2(1+ f ′2 +g′2)
(1+ f ′2)(1+g′2)

. (4.0.1)

Differentiating equation (4.0.1) w.r.t. x, we get

( f +g)
(

f ′′

1+ f ′2

)′
+ f ′

[
f ′′

1+ f ′2
+

g′′

1+g′2

]
=−2

[
(1+ f ′2)(1+g′2)2 f ′ f ′′− (1+ f ′2 +g′2)(1+g′2)2 f ′ f ′′

(1+ f ′2)2(1+g′2)2

]
=−2

[
2 f ′ f ′′(1+ f ′2)(1+g′2)−2 f ′ f ′′(1+ f ′2 +g′2)(1+g′2)

(1+ f ′2)2(1+g′2)2

]
=−4 f ′ f ′′(1+g′2)

[
1+ f ′2 −1− f ′2 −g′2

(1+ f ′2)2(1+g′2)2

]
=

4 f ′ f ′′g′2

(1+ f ′2)2(1+g′2)
,

that is

( f +g)
(

f ′′

1+ f ′2

)′
+ f ′

(
f ′′

1+ f ′2
+

g′′

1+g′2

)
=

4 f ′ f ′′

(1+ f ′2)2 ·
g′2

1+g′2
. (4.0.2)

Differentiating (4.0.2) w.r.t. y, we get

g′
(

f ′′

1+ f ′2

)′
+ f ′

(
g′′

1+g′2

)′
=

4 f ′ f ′′

(1+ f ′2)2

[
(1+g′2)2g′g′′−2g′2g′g′′

(1+g′2)2

]
=

8 f ′ f ′′g′g′′

(1+ f ′2)2(1+g′2)2 ,

or

f ′
(

g′′

1+g′2

)′
+g′

(
f ′′

1+ f ′2

)′
=

8 f ′ f ′′g′g′′

(1+ f ′2)2(1+g′2)2 .
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Dividing on both sides by f ′g′, we get

1
g′

(
g′′

1+g′2

)′
+

1
f ′

(
f ′′

1+ f ′2

)′
=

8 f ′′g′′

(1+ f ′2)2(1+g′2)2 . (4.0.3)

Now differentiating equation (4.0.3) w.r.t. x, we have

1
f ′

(
f ′′

1+ f ′2

)′′
+

(
1
f ′

)′( f ′′

1+ f ′2

)′
=

8g′′

(1+g′2)2

[
(1+ f ′2)2 f ′′′−2 f ′′(1+ f ′2)2 f ′ f ′′

(1+ f ′2)4

]
=

8g′′

(1+g′2)2

[
(1+ f ′2)2 f ′′′−4 f ′ f ′′2(1+ f ′2)

(1+ f ′2)4

]
=

8g′′(1+ f ′2)
(1+g′2)2

[
(1+ f ′2) f ′′′−4 f ′ f ′′2

(1+ f ′2)4

]
,

that is

1
f ′

(
f ′′

1+ f ′2

)′′
+

(
1
f ′

)′( f ′′

1+ f ′2

)′
=

8g′′

(1+g′2)2

[
(1+ f ′2) f ′′′−4 f ′ f ′′2

(1+ f ′2)3

]
. (4.0.4)

Differentiating equation (4.0.4) w.r.t. y, we get

0 = 8
[
(1+g′2)2g′′′−2g′′(1+g′2)2g′g′′

(1+g′2)4

][
(1+ f ′2) f ′′′−4 f ′ f ′′2

(1+ f ′2)3

]
= 8(1+g′2)

[
(1+g′2)g′′′−4g′g′′2

(1+g′2)4

][
(1+ f ′2) f ′′′−4 f ′ f ′′2

(1+ f ′2)3

]
= 8

[
(1+g′2)g′′′−4g′g′′2

(1+g′2)3

][
(1+ f ′2) f ′′′−4 f ′ f ′′2

(1+ f ′2)3

]
=
[
(1+g′2)g′′′−4g′g′′2

][
(1+ f ′2) f ′′′−4 f ′ f ′′2

]
.

This implies either

(1+g′2)g′′′−4g′g′′2 = 0, (4.0.5)

or

(1+ f ′2) f ′′′−4 f ′ f ′′2 = 0. (4.0.6)

We assume that

(1+ f ′2) f ′′′−4 f ′ f ′′2 = 0.
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On integrating, we get

f ′′ = a(1+ f ′2)2, (4.0.7)

for some constant a.

Now substituting equation (4.0.7) in equation (4.0.3), we get

1
g′

(
g′′

1+g′2

)′
+

1
f ′

(
a(1+ f ′2)2

(1+ f ′2)

)′
=

8a(1+ f ′2)2g′′

(1+ f ′2)(1+g′2)2 ,

that implies
1
g′

(
g′′

1+g′2

)′
+

1
f ′
(
a(1+ f ′2)

)′
=

8ag′′

(1+g′2)2 ,

or
1
g′

(
g′′

1+g′2

)′
+

a
f ′
(2 f ′ f ′′) =

8ag′′

(1+g′2)2 ,

that is
1
g′

(
g′′

1+g′2

)′
+2a f ′′ =

8ag′′

(1+g′2)2 . (4.0.8)

Let us discuss several cases:

Case I: Let a = 0, then from equation (4.0.7), we have

f ′′(x) = 0,

this implies

f (x) = mx+n,

where m,n ∈ R;

and from equation (4.0.5), we get

g′′ = b(1+g′2)

for some constant b.

Therefore, from equation (4.0.1)

( f +g)
[

f ′′

1+ f ′2
+

g′′

1+g′2

]
=−2

(1+ f ′2 +g′2)
(1+ f ′2)(1+g′2)

,
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or

(mx+n+g)
[

0+
b(1+g′2)
(1+g′2)

]
=

−2(1+m2 +g′2)
(1+m2)(1+g′2)

,

or

(mx+n+g)b =
−2(1+m2 +g′2)
(1+m2)(1+g′2)

. (4.0.9)

Subcase 1: If b ̸= 0, then m = 0 and from equation (4.0.9), we have

(n+g)b =
−2(1+g′2)
(1+g′2)

,

that is

(n+g)b =−2.

This implies that g is a contant function and so g′′ = 0 and b = 0, a contradiction.

Subcase 2: If b = 0, then g(y) = py+q; p,q ∈ R.

Now equation (4.0.1) can be written as

(mx+n+ py+q)
[

0 · (1+g′2)
(1+g′2)

]
=

−2(1+m2 + p2)

(1+m2)(1+ p2)
,

or

0 =
−2(1+m2 + p2)

(1+m2)(1+ p2)
,

which is again a contradiction.

Case II: Now suppose a ̸= 0, from equation (4.0.8) and since x and y are independent

variables, there exists a constant b such that

2a f ′′ =−b. (4.0.10)

Combining (4.0.8) and (4.0.10), we have

1
g′

(
g′′

1+g′2

)′
− 8ag′′

(1+g′2)2 =−2a f ′′ = b,

that is
1
g′

(
g′′

1+g′2

)′
− 8ag′′

(1+g′2)2 = b.
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In particular from equation (4.0.10), we get

f ′′ =
−b
2a

.

On integrating, we get

f (x) =
−b
4a

x2 +mx+n, m,n ∈ R.

From this expression of the function f together with the differential equation f ′′ = a(1+

f ′2)2, we obtain a 4-degree polynomial on x whose coefficients on x must vanish. This

yields b = m = 0.

Equation (4.0.3) implies that

1
g′

(
g′′

1+g′2

)′
+

1
f ′

(
f ′′

1+ f ′2

)′
=

8 f ′′g′′

(1+ f ′2)(1+g′2)2 ,

that implies

0 =
1
g′

(
g′′

1+g′2

)′
+

1
f ′

(
a(1+ f ′2)2

1+ f ′2

)′

=
1
g′

(
g′′

1+g′2

)′
+

a(1+ f ′2)′

f ′

=
1
g′

(
g′′

1+g′2

)′
+

a
f ′

(
1+

b2x2

4a2

)′
,

that is
1
g′

(
g′′

1+g′2

)′
= 0,

or (
g′′

1+g′2

)′
= 0.

Then g′′ = p(1+g′2) for some constant p ∈ R.

From equation (4.0.1), we have

( f +g)
(

f ′′

1+ f ′2
+

g′′

1+g′2

)
=−2

(1+ f ′2 +g′2)
(1+ f ′2)(1+g′2)

,
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or (
−b
4a

x2 +mx+n+g(y)
)(

−b
2a(1+ f ′2)

+ p
)
=−2

(
1+ b2

4a2 x2 +g′2
)

(
1+ b2

4a2 x2
)
(1+g′2)

.

Here b = m = 0, we get

(n+g(y))p =−2,

which concludes that g is a constant function and p ̸= 0, a contradiction with the fact that

g′′ = p(1+g′2).

Theorem 4.0.2. The only minimal surfaces in H3 that are surfaces of type II as defined in

Eq. 1.0.5 are totally geodesic planes.

Proof. Let S be a translation surface of type II, that is S is given by the parametrization

r(x,z) = (x, f (x)+g(z),z).

Now we compute He and N3 as

rx = (1, f ′,0), rz = (0,g′,1).

Therefore

rx × rz =

∣∣∣∣∣∣∣∣∣
i j k

1 f ′ 0

0 g′ 1

∣∣∣∣∣∣∣∣∣= i( f ′)− j(1)+ k(g′)

rx × rz = ( f ′,−1,g′).

So

∥rx × rz∥=
√

1+ f ′2 +g′2.

Therefore

N =
f ′,−1,g′√

1+ f ′2 +g′2
.

Hence

N3 =
g′√

1+ f ′2 +g′2
.
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Also in this case, we have

He =
(1+g′2) f ′′+(1+ f ′2)g′′

2(1+ f ′2 +g′2)
3
2

.

Therefore by (1.0.3), we have

H =−z

[
(1+g′2) f ′′+(1+ f ′2)g′′

2(1+ f ′2 +g′2)
3
2

]
+

g′√
1+ f ′2 +g′2

.

If S is minimal that is H = 0, then

0 =
√

1+ f ′2 +g′2
[
−z
(
(1+g′2) f ′′+(1+ f ′2)g′′

)
+2g′(1+ f ′2 +g′2)

]
.

Dividing on both sides by (1+ f ′2)(1+g′2), we get

0 =−z
[

f ′′

1+ f ′2
+

g′′

1+g′2

]
+

2g′(1+ f ′2 +g′2)
(1+ f ′2)(1+g′2)

,

or

z
[

f ′′

1+ f ′2
+

g′′

1+g′2

]
=

2g′(1+ f ′2 +g′2)
(1+ f ′2)(1+g′2)

. (4.0.11)

Differentiating equation (4.0.11) w.r.t. x, we get

z
(

f ′′

1+ f ′2

)′
=

2g′

1+g′2

[
(1+ f ′2)2 f ′ f ′′− (1+ f ′2 +g′2)2 f ′ f ′′

(1+ f ′2)2

]
=

4g′ f ′ f ′′

(1+g′2)(1+ f ′2)2 (1+ f ′2 −1− f ′2 −g′2)

=
4g′ f ′ f ′′

(1+g′2)(1+ f ′2)2 (−g′2)

=
−4 f ′ f ′′g′3

(1+g′2)(1+ f ′2)2 .

Hence we deduce the existance of a real number a ∈ R, such that(
f ′′

1+ f ′2

)′
=

−4a f ′ f ′′

(1+ f ′2)2 and
g′3

1+g′2
= az. (4.0.12)

If a = 0 , then g(y) = p is a constant function and from equation (4.0.11), we have

f (x) = mx+n, m,n ∈ R.
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Therefore, the surface can be reparametrized as

r(x,z) = (x,mx+n+ p,z).

This surface is vertical Euclidean plane and the surface is a totally geodesic plane, which

is the statement of given theorem.

Now we assume that a ̸= 0 in equation (4.0.12) and we will arrive to a contradiction. In

particular g′ ̸= 0 and from equation (4.0.12), we have

g′3 = az(1+g′2),

or

g′3 −azg′2 −az = 0. (4.0.13)

Again from equation (4.0.12), we have(
f ′′

1+ f ′2

)′
=

−4a f ′ f ′′

(1+ f ′2)2 .

Integrating it, we get ∫ ( f ′′

1+ f ′2

)′
dx =−2a

∫ 2 f ′ f ′′

(1+ f ′2)2 dx.

Put 1+ f ′2 = t, we have

2 f ′ f ′′dx = dt.

Therefore

f ′′

1+ f ′2
=−2a

∫ dt
t2

=−2a
∫

t−2dt

= 2a
1
t
+b, b ∈ R

=
2a

1+ f ′2
+b, b ∈ R.
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Again from equation (4.0.12), we have

g′3

1+g′2
= az. (4.0.14)

Differentiate w.r.t. z, we get

a =
(1+g′2)3g′2g′′−2g′g′3g′′

(1+g′2)2

=
3g′2g′′(1+g′2)−2g′4g′′

(1+g′2)2

= g′′
[

3g′2(1+g′2)−2g′4

(1+g′2)2

]
= g′′

[
3g′2

1+g′2
− 2g′

1+g′2
· g′3

1+g′2

]
.

Using (4.0.14), we get

a = g′′
[

3g′2

1+g′2
− 2g′

1+g′2
·az
]

=
g′′

1+g′2
[3g′2 −2azg′]

=
g′g′′

1+g′2
[3g′−2az],

or

g′g′′ =
a(1+g′2)
3g′−2az

,

that is

g′′ =
a(1+g′2)

g′(3g′−2az)
. (4.0.15)

Assume (3g′−2az) ̸= 0, since a ̸= 0 using equation (4.0.15) in (4.0.11), we get

z

(
f
′′

1+ f ′2
+

g
′′

1+g′2

)
= 2g

′ (1+ f
′2 +g

′2

(1+ f ′2)(1+g′2)
,

or

z

(
2a

1+ f ′2
+b+

a(1+g
′2)

(1+g′2)g′
(3g′ −2az)

)
= 2g

′ (1+ f
′2 +g

′2

(1+ f ′2)(1+g′2)
,
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or

z
(

b+2a
1

1+ f ′2
+a

1
g′
(3g′ −2az)

)
=

2g
′
(1+ f

′2 +g
′2)

(1+ f ′2)(1+g′2)
.

That implies[
b+

2a
1+ f ′2

+
a

g′
(3g′ −2az)

]
=

2g
′

z(1+g′2)

g
′2

g′2
(1+ f

′2 +g
′2)

(1+ f ′2)

=
g
′3

z(1+g′2)

2(1+ f
′2 +g

′2)

g′
(1+ f ′2)

=
2a(1+ f

′2 +g
′2)

g′2(1+ f ′2)
,

or

b+
a

g′
(3g′ −2az)

=
2a(1+ f

′2)

g′2(1+ f ′2)
+

2ag
′2

g′2(1+ f ′2)
− 2a

(1+ f ′2)
,

or

b+
a

g′
(3g′ −2az)

=
2a
g′2 +

2a
(1+ f ′2)

− 2a
(1+ f ′2)

,

or

b+
a

g′
(3g′ −2az)

=
2a
g′2 ,

or
bg

′
(3g

′ −2az)+a
g′
(3g′ −2az)

=
2a
g′2 ,

that is

bg′2(3g′−2az)+ag′ = 2a(3g′−2az),

or

3bg′3 −2abzg′2 +ag′ = 6ag′−4a2z.

That implies

3bg′3 −2abzg′2 −5ag′+4a2z = 0. (4.0.16)

If b = 0, use this in equation (4.0.16), we have

−5ag′ =−4a2z,
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that is

g′ =
4
5

az.

By using this value of g′ in equation (4.0.13), we have

0 =

(
4
5

az
)3

−az
(

4
5

az
)2

−az

=
64

125
a3z3 −a3z3 16

25
−az

=−16
25

a3z3 −az

defined in some interval of R, this leads to a contradiction.

Thus we assume b ̸= 0 in equation (4.0.16).

Set x = g′ from equation (4.0.13) and (4.0.16), we have

3bx3 −2abzx2 −5ax+4a2z = 0 (4.0.17)

and

x3 −azx2 −az = 0. (4.0.18)

Multiplying equation (4.0.18) by 3b and then subtracting from equation (4.0.17), we get

3bx3 −2abzx2 −5ax+4a2z−3bx3 +3abzx2 +3abz = 0,

or

abzx2 −5ax+4a2z+3abz = 0,

that is

bzx2 −5x+4az+3bz = 0. (4.0.19)

Similarly if we multiply equation (4.0.18) by 2b and then subtracting from equation

(4.0.17), we get

3bx3 −2abzx2 −5ax+4a2z−2bx3 +2abzx2 +2abz = 0,
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or

bx3 −5ax+4a2z+2abz = 0. (4.0.20)

Now multiplying equation (4.0.19) by x and equation (4.0.20) by z then subtracting, we

get

bzx3 −5x2 +4azx+3bzx−bzx3 +5azx−4a2z2 −2abz2 = 0.

Implies

−5x2 +9azx+3bzx−4a2z2 −2abz2 = 0,

or

−5x2 +3z(3a+b)x−2az2(2a+b) = 0. (4.0.21)

Multiplying the above equation by bz, we have

−5bzx2 +bz(9az+3bz)x−2abz3(2a+b) = 0. (4.0.22)

On multiplying (4.0.19) by 5, we get

5bzx2 −25x+20az+15bz = 0. (4.0.23)

Adding equation (4.0.22) and (4.0.23), we get

bz(9az+3bz)x−25x−2abz3(2a+b)+20az+15bz = 0,

that is

(9abz2 +3b2z2 −25)x−4a2bz3 −2ab2z3 +20az+15bz = 0,

or

(9abz2 +3b2z2 −25)x = 4a2bz3 +2ab2z3 −20az−15bz,

or

(9abz2 +3b2z2 −25)x = z(−20a−15b+4a2bz2 +2ab2z2).

Therefore, we have

x =
z(−20a−15b+4a2bz2 +2ab2z2)

(9abz2 +3b2z2 −25)
.
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Replacing this expression of x in equation (4.0.19), we obtain a polynomial equation on z

as

4a2b3(2a+b)2z7 −b2(16a3 −109a2b−108ab2 −27b3)z5 −125ab2z3 = 0

and z is defined in some interval of R. This implies a = b = 0, a contradiction.

This completes the proof.
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