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Abstract

A fixed point is a point that remains unchanged under the action of a mapping or function.

Fixed point theory aims to understand the existence, uniqueness and properties of fixed

points and their applications in various areas of mathematics and other disciplines. There

are many fixed point theorems, whose applications provide powerful mathematical tools

for proving the existence of solutions, equilibrium points and optimal points in various

disciplines including mathematics, economics, game theory and optimization which can be

found in [1, 6, 5].

In the proposed work we studied two important fixed point theorems:

1. Brouwer’s Fixed Point Theorem states that any continuous function from a closed

ball in n dimensional Euclidean space to itself has at least one fixed point. This

theorem has significant applications in topology, game theory and economics. For

example, it is used to prove the existence of equilibrium points in economic models

and to study the behavior of dynamical systems.

2. Banach’s Fixed Point Theorem, also known as the contraction mapping theorem

states that in a complete metric space, any contraction mapping has a unique fixed

point. A contraction mapping is a function that contracts the distance between

points in the space. This theorem has applications in various fields such as economics

and physics. It is used to prove the existence and uniqueness of solutions to equations

and systems of equations.
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Chapter 1
Introduction

A fixed point theory is a beautiful mixture of Mathematical analysis to explain some

conditions in which maps give excellent solutions. A fixed point of a function is a point

that remains unchanged under that function. In geometric terms, it’s a point where the

graph of the function intersects the identity line, where the input and output are the same

more about it can be found in [1, 2, 5, 7].

1.1 Definitions used in Dissertation

Definition 1.1.1 (Fixed point) Suppose we have a non empty set X and we have a

function f : X → X (need not be continuous) then we say x ∈ X is a fixed point of f if

f(x) = x.

Problem-1: Let T : R → R be defined by T (x) = x2. Determine the fixed point of T.

Solution:

Given that T (x) = x2. From the definition of fixed point we have

T (x) = x,

⇒ x2 = x

or x(x− 1) = 0.

therefore x = 0, 1.
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1.1 Definitions used in Dissertation

Thus, the fixed points of T are 0 and 1.

Problem-2: Does a translation mapping T (x) = x+ a where a is non-zero fixed number

have fixed points.

Solution:

Given that T (x) = x+ a. From the definition of fixed point we have,

T (x) = x

⇒ x+ a = x

or a = 0. [By Left Cancellation Law]

Since T (x) = x+ a is a translation mapping, so a ̸= 0.

Thus, the translation mapping T (x) = x+ a has no fixed point.

Problem-3: Show that f(x) = −x for x ∈ [−2,−1] ∪ [1, 2] has no fixed point.

Solution:

Given that f(x) = −x. From the definition of fixed point we have,

f(x) = x

⇒ −x = x.

It is clear that no point of [−2,−1] ∪ [1, 2] will satisfy the above equation.

Thus, f(x) = −x has no fixed point for x ∈ [−2,−1] ∪ [1, 2].

Problem-4: Let T be a mapping on R into itself defined by T (x) = 1
2x. Show that T has

a unique fixed point.

Solution:

Given T (x) = 1
2x

T (y) = y

1

2
y = y,

which holds good at y = 0.

Note that

∥T (x)− T (y)∥ =

∥∥∥∥12x− 1

2
y

∥∥∥∥ =
1

2
∥x− y∥ .

Thus T is a contraction mapping. Hence, by Banach fixed point theorem, T has a unique

fixed point.
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1.1 Definitions used in Dissertation

Problem-5: Give an example to show that T satisfies ∥T (x)− T (y)∥ = ∥x− y∥ may not

have any fixed point?

Solution:

Let T : R → R be defined by

T (x) =

{
x− 1

2e
x for x ≤ 0

−1
2 + 1

2x for x ≥ 0
(1.1.1)

Now for x, y ≤ 0

∥T (x)− T (y)∥ =

∥∥∥∥x− 1

2
ex − y +

1

2
ey
∥∥∥∥

=

∥∥∥∥(x− y)− 1

2
(ex − ey)

∥∥∥∥
≤ ∥x− y∥ .

For x, y ≥ 0

∥T (x)− T (y)∥ =

∥∥∥∥−1

2
+

1

2
x+

1

2
− 1

2
y

∥∥∥∥
=

∥∥∥∥12(x− y)

∥∥∥∥
≤ ∥x− y∥ .

Thus T satisfies, ∥T (x)− T (y)∥ ≤ ∥x− y∥ .
From the definition of fixed point we have T (x) = x.

Now for x ≤ 0

T (x) = x

⇒ x− 1

2
ex = x

or − 1

2
ex = 0

⇒ ex = 0,

which is not possible for finite x.
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1.1 Definitions used in Dissertation

For x ≥ 0

T (x) = x

⇒ −1

2
+

1

2
x = x

or
1

2
x = −1

2

⇒ x = −1,

is not acceptable as x ≥ 0.

Thus, T defined in (1.1.1) is an example which satisfies the given condition (Banach

contraction theorem) but have no fixed point.

Definition 1.1.2 (Lipschitz continuous function) Let (X, d) be a metric space. A

mapping T : X → X is said to be Lipschitz continuous if there exists a constant α ≥ 0

such that

d(T (x), T (y)) ≤ αd(x, y)

for all x, y ∈ X.

(a) If α = 1, then T is said to be nonexpansive.

(b) If α ∈ (0, 1), then T is said to be contraction.

(c) If d(T (x), T (y)) < αd(x, y) for all x ̸= y, then T is said to be contractive.

The number α is called Lipschitz constant of T.

Definition 1.1.3 Let (X, d) be a metric space and let {xn} be a sequence of points in X,

1. We say that {xn} is a Cauchy sequence if for every ε > 0, there exists an n ∈ N such

that i, j ≥ n gives

d(xi, xj) < ε.

2. We say that {xn} converges to a point x ∈ X if

lim
n→∞

d(xn, x) = 0.
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1.1 Definitions used in Dissertation

Definition 1.1.4 A metric space (X, d) is said to be complete if every Cauchy sequence

in X converges to a point x in X.

Definition 1.1.5 Let X be a nonempty set. A function f : X → R is said to be

(a) bounded above if there exists a real number k such that f(x) ≤ k for all x ∈ X;

(b) bounded below if there exists a real number k such that k ≤ f(x) for all x ∈ X;

(c) bounded if it is both bounded above as well as bounded below.

Definition 1.1.6 A function ψ : R+ → R+ is said to be upper semicontinuous from the

right if rn ↓ r ≥ 0 implies lim sup
n→∞

ψ(rn) ≤ ψ(r).

Definition 1.1.7 [Lipschitzian map] Let (X, d) be a metric space. A map F : X −→ X

is said to be Lipschitzian if there exists a constant α ≥ 0 with

d(F (x), F (y)) ≤ αd(x, y) for all x, y ∈ X. (1.1.2)

Notice that a Lipschitzian map is necessarily continuous. The smallest α for which (1.1.2)

holds is said to be the Lipschitz constant for F and is denoted by L. If L < 1 we say that

F is contraction, whereas if L=1, we say that F is nonexpansive.

Definition 1.1.8 (Contraction map) A mapping T : X −→ X, where X is a subset of

a normed linear space N , is called a contraction mapping or simply a contraction, if there

is a positive number a < 1 such that

∥T (x)− T (y)∥ ≤ a∥x− y∥,

for all x, y ∈ X.

Definition 1.1.9 (Metric space) Let E be a non-empty set. A function d (which is a

real valued function defined on E × E) is said to be a metric X, if the following properties

are satisfied:

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = d(y, x) (symmetry)
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1.1 Definitions used in Dissertation

3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

4. d(x, y) = 0 iff x = y (Positiveness) for arbitrary elements x, y, z of E and d is

called a metric on E and E together with d i.e; (E, d) is called a metric space.

Note that (E, d) is called semi metric space if property 4 is not satisfied.

Definition 1.1.10 (Norm) A norm defined on a vector space X is a non-negative real

valued function ∥•∥ : X → R whose value at x is denoted by ∥x∥ such that for any x, y ∈ X

and for any scalar α we have the following properties:

(a). ∥x∥ ≥ 0 ∀ x ∈ X

(b). ∥x∥ = 0 iff x = 0

(c). ∥αx∥ = |α|∥x∥

(d). ∥x+ y∥ ≤ ∥x∥+ ∥y∥

then ∥.∥ is said to be a norm on X and the ordered pair (X, ∥∥) is called a normed linear space.

Definition 1.1.11 The normed linear space X is said to be complete, if every Cauchy

sequence in X converges to some x ∈ X, that is, every Cauchy sequence is convergent in

X. In otherwords, a complete normed linear space is called a Banach space or simply a

B-space.
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Chapter 2
Banach’s Fixed Point Theorem

The Banach contraction theorem is one of the most important and useful results in the

fixed point theory. It is perhaps one of the most widely used fixed point theorems in all

analysis. This is because the contraction condition on the mapping is simple and easy to

verify, because it requires only completeness assumption on the underlying metric space.

It finds almost canonical applications in the theory of differential and integral equations.

Although the basic idea was known earlier, the theorem first appeared in explicit form

in the setting of C[0, 1] in Banach’s 1922 Ph.D. thesis where it was used to establish the

existence of a solution of an integral equation [8].

This chapter deals with some important and useful results in metric fixed point theory.

We present the Banach contraction theorem and some of its applications. An important

generalization of Banach contraction theorem, obtained by Boyd and Wong [4] in 1969, is

also given.

2.1 Results

Theorem 2.1.1 [Banach contraction principle for metric space] Let (X, d) be a

complete metric space and T : X → X be a contraction mapping. Then T has a unique

fixed point.

Proof: We construct a sequence {xn} by the following iterative method.

Choose any arbitrary point x0 ∈ X.

9



2.1 Results

Then x0 ̸= T (x0), otherwise x0 is a fixed point of T and there is nothing to prove.

Now, we define

x1 = T (x0), x2 = T (x1), x3 = T (x2), . . . , xn = T (xn−1) ∀ n ∈ N.

We claim that this sequence {xn} of points of X is a Cauchy sequence.

Since T is a contraction mapping with Lipschitz constant 0 < α < 1, for all p = 1, 2, . . . ,

we have

d(xp+1, xp) = d (T (xp), T (xp−1))

≤ αd (xp, xp−1)

= αd (T (xp−1), T (xp−2))

≤ α2d(xp−1, xp−2)

. . . . . . . . .

. . . . . . . . .

= αp−1d (T (x1), T (x0))

≤ αpd(x1, x0).

Let m and n be any positive integers with m > n. Then, by the triangle inequality, we have

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ (αm−1 + αm−2 + · · ·+ αn)d(x1, x0)

≤ αn(αm−n−1 + αm−n−2 + · · ·+ 1)d(x1, x0)

≤ αn

1− α
d(x1, x0).

Since lim
n→∞

αn = 0 and d(x1, x0) is fixed, the right hand side of the above inequality

approaches to 0 as n→ ∞.

It follows that {xn} is a Cauchy sequence in X.

Since X is complete, there exists x ∈ X such that xn → x.

We show that this limit point x is a fixed point of T.

10



2.1 Results

Since T is a contraction mapping, from the triangle inequality, we have

d(x, T (x)) ≤ d(x, xn) + d(xn, T (x))

= d(x, xn) + d (T (xn−1), T (x))

≤ d(x, xn) + αd(xn−1, x)

→ 0 as n→ ∞.

Hence d(x, T (x)) = 0 this gives T (x) = x.

Now we show that the fixed point of T is unique. Suppose to the contrary that x and y

are two distinct fixed points of T.

T (x) = x and T (y) = y.

Since T is a contraction mapping, we have

d(x, y) = d(T (x), T (y)) ≤ αd(x, y) < d(x, y)

a contradiction.

Hence x = y.

Remark 2.1.2 If X is not complete in Theorem 2.1.1, then T may not have a fixed point.

For example, consider X = (0, 1) and the mapping T : X → X defined by T (x) = x
2 .

Then X is not a complete metric space with the usual metric and T does not have any fixed

point.

In fact, T (0) = 0 /∈ X.

Remark 2.1.3 If T is not contraction in Theorem 2.1.1, then it may not have a fixed

point. For example, consider the metric space X = [1,∞) with the usual metric and the

mapping T : X → X given by T (x) = x+ 1
x . Then X is a complete metric space but T is

11



2.1 Results

not a contraction mapping. In fact,

|T (x)− T (y)| = |(x+
1

x
)− (y +

1

y
)|

= |x+
1

x
− y − 1

y
|

= |x− y|
(
1− 1

xy

)
< |x− y| for all x, y ∈ X.

So, T is contractive. Of course, T does not have any fixed point.

The following example shows that if X is a complete metric space and T : X → X is not a

contraction mapping but T 2 = T ◦ T is contraction, even then T has a fixed point.

Example 2.1.4 Let X = R be a metric space with the usual metric and T : X → X be a

mapping defined as

T (x) =

{
1 if x ∈ Q
0 if x ∈ Qc.

Then T is not continuous and hence not a contraction mapping. Now

T 2(x) = T (T (x)) =

{
T (1) = 1 if x ∈ Q
T (0) = 1 if x ∈ Qc.

Then T 2 is a contraction mapping but both T 2 and T have the same fixed point that is 1.

The above example motivates us to present the following result.

Theorem 2.1.5 Let (X, d) be a complete metric space and T : X → X be a mapping such

that for some integer m, Tm = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
m times

is a contraction mapping. Then T has a

unique fixed point.

Proof: By theorem 2.1.1, Tm has a unique fixed point x ∈ X that is, Tm(x) = x.

Then

T (x) = T (Tm(x)) = Tm(T (x))

12



2.1 Results

and so T (x) is a fixed point of Tm. Since the fixed point of Tm is unique, so T (x) = x.

To prove the uniqueness, we assume that y is another fixed point of T.

Then T (y) = y and so Tm(y) = y.

Again by the uniqueness of the fixed point of Tm, we have x = y.

Hence, x ∈ X is a unique fixed point of T.

Theorem 2.1.6 (Banach contraction principle for Banach space) Every contrac-

tion mapping T defined on a Banach space X into itself has a unique fixed point x ∈ X.

Proof:

1). Existence of a fixed point:

Let us consider an arbitrary point x0 ∈ X, and define the iterative sequence {xn} by

x0, x1 = Tx0, x2 = Tx1, x3 = Tx2, . . . , xn = Txn−1.

Then,

x2 = Tx1 = T (Tx0) = T 2x0,

x3 = Tx2 = T (T 2x0) = T 3x0,

...

xn = Tnx0.

If m > n, say m = n+ p, p = 1, 2, · · · . Then

∥xn+p − xn∥ = ∥Tn+px0 − Tnx0∥

= ∥T (Tn+p−1x0 − Tn−1x0)∥

≤ k∥Tn+p−1x0 − Tn−1x0∥,

as T is a contraction mapping, continuing this process n− 1 times, we have

∥xn+p − xn∥ ≤ kn∥T p(x0)− x0∥, (2.1.1)

for n = 0, 1, 2, 3, . . . and for all p.

13



2.1 Results

Now,

∥T px0 − x0∥ = ∥T px0 − T p−1x0 + T p−1x0 − T p−2x0 + T p−2x0 − . . .+ Tx0 − x0∥,

≤ ∥TPx0 − T p−1x0∥+ ∥T p−1x0 − T p−2x0∥+ . . .+ ∥Tx0 − x0∥,

≤ ∥T p−1x1 − T p−1x0∥+ ∥T p−2x1 − T p−2x0∥+ . . .+ ∥x1 − x0∥,

≤ kp−1∥x1 − x0∥+ kp−2∥x1 − x0∥+ . . .+ ∥x1 − x0∥,

≤ (kp−1 + kp−2 + . . .+ 1)∥x1 − x0∥,

≤ 1− kp

1− k
∥x1 − x0∥. (2.1.2)

By the sum of G.P series whose ratio is < 1. Since 0 < k < 1, so the number

1− kp < 1. Using this result in above inequality 2.1.2, we get

∥T px0 − x0∥ ≤ 1

1− k
∥x1 − x0∥, (2.1.3)

with the help of equation 2.1.1 the result becomes

∥xn+p − xn∥ ≤ kn

1− k
∥x1 − x0∥. (2.1.4)

When n→ ∞ then m = n+ p→ ∞, gives

∥xn+p − xn∥ → 0

this shows that {xn} is a Cauchy sequence in X. Hence, {xn} must be convergent,

say

lim
n→∞

xn = x.

2). limit x is a fixed point of T :

Since, T is continuous we have

Tx = T ( lim
n→∞

xn)

= lim
n→∞

Txn

= lim
n→∞

xn+1 = x,

since the limit of {xn+1} is the same as that of {xn}. Thus x is a fixed point of T.

3). Uniqueness of the fixed point of T :

14



2.1 Results

Let y be another fixed point of T. Then Ty = y, also we have ∥Tx−Ty∥ ≤ k∥x− y∥,
as T is a contraction mapping.

But ∥Tx− Ty∥ ≤ ∥x− y∥, because Tx = x and Ty = y

therefore ∥x− y∥ ≤ k∥x− y∥ that is k ≥ 1. As 0 < k < 1, so the above relation is

possible only when

∥x− y∥ = 0

⇒ x− y = 0

or x = y

This proves that fixed point of T is unique.

2.1.1 Applications of Banach’s fixed point theorem

Application 1. Let X = R be the Banach space of real numbers with ∥x∥ = |x| and [a, b] ⊂ R,

f : [a, b] → [a, b], a differentiable function such that |f ′(x)| ≤ k < 1. Find the solution

of the equation f(x) = x.

Solution: Let x, y ∈ [a, b] and y < z < x.

Then, by Lagrange’s mean value theorem, we have

f(x)− f(y)

x− y
= f ′(z)

i.e.,

f(x)− f(y) = (x− y)f ′(z)

or

|f(x)− f(y)| = |(x− y)f ′(z)|

or

|f(x)− f(y)| = |x− y||f ′(z)|

so that,

|f(x)− f(y)| ≤ k|x− y|.

Thus, f is a contraction mapping on [a, b] into itself.

Since [a, b] is a closed subset of X = R.

Therefore, by Banach contraction theorem there exists a unique fixed point x∗ ∈ [a, b],

such that f(x∗) = x∗.
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2.1 Results

Hence, x∗ is the solution of the equation f(x) = x.

Application 2. Find the solution of the system of n linear algebraic equations with n unknowns:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

an1x1 + an2x2 + . . .+ annxn = bn

 (2.1.5)

Solution: The system 2.1.5 can be written as

x1 = (1− a11)x1 − a12x2 − . . .− a1nxn + b1

x2 = −a21x1 + (1− a22)x2 − . . .− a2nxn + b2
...

...

xn = −an1x1 − an2x2 − . . .+ (1− ann)xn + bn

 (2.1.6)

Let aij = −aij + δij , where

δij =

{
1 for i = j

0 for i ̸= j.

Then the equation 2.1.6 can be written in the following equivalent form

xi =

n∑
j=1

aijxj + bi, i = 1, 2, . . . , n (2.1.7)

If x = (x1, x2, . . . , xn) ∈ Rn, then equation 2.1.7 can be written in the form Tx = x,

where T is defined by

Tx = y, (2.1.8)

where y = (y1, y2, . . . , yn) and yi =
n∑

j=1

aijxj + bi. Here T : Rn → Rn and (aij) is an

(n× n) matrix. Finding solutions of the system 2.1.5 or 2.1.6 is thus equivalent to

find the fixed point of operator 2.1.8 in order to find a unique fixed point of T . That

is, a unique solution of equation 2.1.8, We apply the Banach contraction principle,

Equation 2.1.8 has a unique solution if

n∑
j=1

|aij | =
n∑

j=1

| − aij + δij | ≤ k < 1, i = 1, 2, . . . , n
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For

x = (x1, x2, . . . , xn) ∈ Rn

x′ = (x′1, x
′
2, . . . , x

′
n) ∈ Rn

y = (y1, y2, . . . , yn) ∈ Rn

y′ = (y′1, y
′
2, . . . , y

′
n) ∈ Rn

We have

||Tx− Tx′|| = ||y − y′||

y′i =

n∑
j=1

aijx
′
j + bi, i = 1, 2, . . . , n

Also if y = (y1, y2, . . . , yn) ∈ Rn, then ∥y∥ = sup
1≤i≤n

|yi|.

Therefore,

∥Tx− Tx′∥ = ∥y − y′∥

= sup
1≤i≤n

|yi − y′i|

= sup
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

aijxj + bi −
n∑

j=1

aijx
′
j − bi

∣∣∣∣∣∣
= sup

1≤i≤n

∣∣∣∣∣∣
n∑

j=1

aij(xj − x′j)

∣∣∣∣∣∣
Using the triangle inequality we get

∥Tx− Tx′∥ ≤ sup
1≤i≤n

n∑
j=1

|aij ||xj − x′j |

⇒ ∥Tx− Tx′∥ ≤ sup
1≤i≤n

n∑
j=1

|xj − x′j | sup
1≤i≤n

n∑
j=1

|aij |

≤ k sup
1≤i≤n

|xj − x′j | where
n∑

j=1

|aij | ≤ k < 1

gives ∥Tx− Tx′∥ ≤ k∥x− x′∥, where ∥x− x′∥ = sup
1≤i≤n

|xj − x′j |.

This shows that T is a contraction mapping of the Banach space into itself.

Hence, by Banach contraction principle, there exists a unique fixed point x∗ of T in

Rn, that is, x∗ is a solution of 2.1.5.
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Application 3. Show that the Fredholm integral equation

x(s) = y(s) + µ

∫ b

a
K(s, t)x(t)dt,

has a unique solution on [a, b].

Solution: We assume that K(s, t) is continuous in both variables a ≤ s ≤ b and

a ≤ t ≤ b. Let y ∈ C[a, b]. Hence, |K(s, t)| ≤ λ for all (s, t) ∈ [a, b]× [a, b]. We first

consider the integral equation on C[a, b], the space of all continuous functions defined

on the interval [a, b] with the metric

d(x, y) = max
t∈[a,b]

|x(t)− y(t)|.

Write the given integral equation in the form x = Tx, where

Tx(s) = y(s) + µ

∫ b

a
K(s, t)x(t)dt. (2.1.9)

Since the kernel K and the function y are continuous,

It follows that equation 2.1.9 defines an operator

T : C[a, b] → C[a, b],

such that

d(Tx, Ty) = max
t∈[a,b]

|Tx(t)− Ty(t)|

= max
t∈[a,b]

∣∣∣∣y(t) + µ

∫ b

a
K(s, t)x(t)dt− y(t)− µ

∫ b

a
K(s, t)y(t)dt

∣∣∣∣
= |µ| max

t∈[a,b]

∣∣∣∣∫ b

a
K(s, t)[x(t)− y(t)]dt

∣∣∣∣ .
Using triangle inequality for integrals gives

d(Tx, Ty) ≤ |µ| max
t∈[a,b]

∫ b

a
|K(s, t)| |x(t)− y(t)|dt

≤ |µ|λd(x, y)(b− a),

⇒ d(Tx, Ty) ≤ Kd(x, y), where K = |µ|λ(b− a).
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If K < 1 ⇒ |µ|λ(b− a) < 1 ⇒ |µ| < 1
λ(b−a) .

Then T becomes contraction.

Under this condition, we conclude that T has a unique solution x on [a, b].

Application 4. Let the function K(x, y) be defined and measurable in the square

A = {(x, y) : a ≤ x ≤ b, a ≤ y ≤ b}.

Further, let

∫ b

a

∫ b

a
|K(x, y)|2dxdy <∞ and g(x) ∈ L2(a, b) where L2(a, b) is the

space of square-Lebesgue integrable functions on the interval (a, b). Then the integral

equation

f(x) = g(x) + λ

∫ b

a
K(x, y)f(y)dy

has a unique solution f(x) ∈ L2(a, b) for every sufficiently small value of the parameter

λ.

Proof : Let x = L2 and Consider the mapping T : L2(a, b) → L2(a, b) defined as

Tf = h,

where h(x) = g(x) + λ
∫ b
a K(x, y)f(y)dy.

This definition is valid for each f ∈ L2(a, b), h ∈ L2(a, b). Since g ∈ L2(a, b) and λ is

a scalar, it is sufficient to show that

ψ(x) = λ

∫ b

a
K(x, y)f(y)dy ∈ L2(a, b).

Since,

|ψ(x)| =
∣∣∣∣λ ∫ b

a
K(x, y)f(y)dy

∣∣∣∣ ≤ ∫ b

a
|K(x, y)f(y)| dy.

By Cauchy-Schwartz inequality, we have

|ψ(x)| ≤
(∫ b

a
|K(x, y)|2 dy

) 1
2
(∫ b

a
|f(y)|2 dy

) 1
2

⇒ |ψ(x)|2 ≤
(∫ b

a
|K(x, y)|2 dy

)(∫ b

a
|f(y)|2 dy

)
this gives,

∫ b

a
|ψ(x)|2 dx ≤

∫ b

a

(∫ b

a
|K(x, y)|2 dy

)
dx

∫ b

a

(∫ b

a
|f(y)|2 dy

)
dx.
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By the hypothesis

∫ b

a

∫ b

a
|K(x, y)|2 dxdy <∞ and

∫ b

a

(∫ b

a
|f(y)|2 dy

)
dx <∞.

∴
∫ b

a
|ψ(x)|2 dx <∞.

Thus, ψ(x) =
∫ b
a K(x, y)f(y)dy ∈ L2(a, b).

We know that L2(a, b) is a Banach space with norm

∥f∥ =

(∫ b

a
|f(y)|2 dy

) 1
2

.

We now show that T is a contraction mapping. We have,

∥Tf − Tf1∥ = ∥h− h1∥ .

Where h1(x) = g1(x) + λ
∫ b
a K(x, y)f1(y)dy. Now,

∥h− h1∥ =

∥∥∥∥g(x) + λ

∫ b

a
K(x, y)f(y)dy − g1(x)− λ

∫ b

a
K(x, y)f1(y)dy

∥∥∥∥
=

∥∥∥∥[g(x)− g1(x)] + λ

∫ b

a
[K(x, y){f(y)− f1(y)}] dy

∥∥∥∥
≤ ∥g(x)− g1(x)∥+

∥∥∥∥λ∫ b

a
[K(x, y){f(y)− f1(y)}] dy

∥∥∥∥
≤
∥∥∥∥λ ∫ b

a
[K(x, y){f(y)− f1(y)}] dy

∥∥∥∥
≤ |λ|

(∫ b

a

∣∣∣∣[∫ b

a
K(x, y){f(y)− f1(y)}dy

]∣∣∣∣2 dx
) 1

2

.

By Cauchy-Schwartz-Bunyakowski inequality, we get

∥h− h1∥ ≤ |λ|
(∫ b

a

∫ b

a
|K(x, y)|2 dxdy

) 1
2
(∫ b

a
|f(y)− f1(y)|2 dy

) 1
2

≤ |λ|
(∫ b

a

∫ b

a
|K(x, y)|2 dxdy

) 1
2

∥f − f1∥ .

Hence, ∥Tf − Tf1∥ ≤ |λ|
(∫ b

a

∫ b
a |K(x, y)|2 dxdy

) 1
2 ∥f − f1∥ .
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If

|λ| < 1(∫ b
a

∫ b
a |K(x, y)|2 dxdy

) 1
2

then,

∥Tf − Tf1∥ ≤ K ∥f − f1∥ ,

where K = |λ|
(∫ b

a

∫ b
a |K(x, y)|2 dxdy

) 1
2
< 1.

Thus T is a contraction and so T has a unique fixed point. That is, there exists a

unique f∗ ∈ L2(a, b) such that Tf∗ = f∗.

This fixed point f∗ is a unique solution of the given equation.

Application 5. Application of Banach contraction theorem to differential equations.

We give an application of Banach contraction theorem to prove the existence and

uniqueness of the following ordinary differential equation with an intial condition:

dy

dx
= f(x, y) , y(x0) = y0.

Theorem 2.1.7 (Picard’s theorem): Let f(x, y) be a continuous function of two

variables in a rectangle, A = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} and satisfy the Lipschitz

condition in the second variable y.

Further, let (x0, y0) be any interior point of A. Then the differential equation
dy
dx = f(x, y). has a unique solution, say y = g(x) which passes through (x0, y0).

Proof: Given that the differential equation is

dy

dx
= f(x, y) (2.1.10)

Let y = g(x) satisfy 2.1.10 and the property that g(x0) = y0.

Integrating 2.1.10 from x0 to x we get

[y]xx0
=

∫ x

x0

f (t, g(t)) dt

thus g(x)− g(x0) =

∫ x

x0

f (t, g(t)) dt ∵ y = g(x).

Therefore,

g(x) = y0 +

∫ x

x0

f (t, g(t)) dt. (2.1.11)
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Thus a unique solution of 2.1.10 is equivalent to a unique solution of 2.1.11. Since,

f(x, y) satisfies the Lipschitz condition in y, there exists a constant q > 0, such that

|f(x, y1)− f(x, y2)| ≤ q|y1 − y2| where (x, y1), (x, y2) ∈ A.

Since f(x, y) is continuous on a compact subset A of R2, it is bounded. So, there

exists a positive constant m such that |f(x, y)| ≤ m,∀ (x, y) ∈ A.

Let us choose a positive constant p such that pq < 1 and the rectangle

B = {(x, y)|x0 − p ≤ x ≤ x0 + p, y0 − pm ≤ y ≤ y0 + pm}

is contained in A.

Let X be the set of all real-valued continuous functions y = g(x) defined on

[x0 − p, x0 + p] such that ∥g(x)− y0∥ ≤ mp i.e, X is a closed subset of the Banach

space C[x0 − p, x0 + p] with the sup norm.

Let T : X → X be defined as Tg = h where h(x) = y0 +
∫ x
x0
f (t, g(t)) dt.

Here

∥h(x)− y0∥ =

∥∥∥∥∫ x

x0

f (t, g(t)) dt

∥∥∥∥
≤
∫ x

x0

|f (t, g(t))| dt

≤ m

∫ x

x0

dt

≤ m(x− x0) ≤ mp

therefore h(x) ∈ X and so T is well defined.
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Let g, g1 ∈ X, then

∥Tg − Tg1∥ = ∥h− h1∥

=

∥∥∥∥y0 + ∫ x

x0

f (t, g(t)) dt− y0 −
∫ x

x0

f (t, g1(t)) dt

∥∥∥∥
=

∥∥∥∥∫ x

x0

(f (t, g(t))− f (t, g1(t))) dt

∥∥∥∥
≤
∫ x

x0

∥f (t, g(t))− f (t, g1(t))∥ dt

≤ q

∫ x

x0

∥g(t)− g1(t)∥ dt

= q(x− x0) ∥g − g1∥

≤ pq ∥g − g1∥

∥Tg − Tg1∥ ≤ k ∥g − g1∥ ,

where 0 < k = pq < 1.

Hence, T is a contraction mapping of X onto itself. Therefore, by Banach contraction

theorem, T has a unique fixed point g∗ ∈ X. This unique fixed point g∗ is the unique

solution of 2.1.11.

In 1969, Boyd and Wong [18] obtained the following generalization of Banach contraction

theorem.

Theorem 2.1.8 Let (X, d) be a complete metric space and ψ : [0,∞) → [0,∞) be upper

semicontinuous from the right such that 0 ≤ ψ(t) < t for all t > 0. If T : X → X satisfies

d (T (x), T (y)) ≤ ψ (d(x, y)) ∀ x, y ∈ X, (2.1.12)

then it has a unique fixed point x ∈ X and {Tn(x)} converges to x for all x ∈ X.

Proof. For any fixed x ∈ X, let xn = Tn(x), n = 1, 2, . . . and an = d(xn, xn+1) =

d
(
Tn(x), Tn+1(x)

)
. We show that an is convergent.

We may assume that an > 0 for all n > 0.
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Then, for all n > 1,

an = d
(
Tn(x), Tn+1(x)

)
= d (T (xn−1), T (xn))

≤ ψ (d(xn−1, xn))

= ψ(an−1)

< an−1.

Thus, the sequence {an} is monotonically decreasing and bounded below so it is convergent.

Let lim
n→∞

an = a. We show that a = 0. If a > 0, then an+1 ≤ ψ(an).

By the upper semicontinuity from the right of the function ψ, we obtain a ≤ ψ(a) which is

a contradiction with the property of ψ.

Thus a = 0 and an → 0 as n→ ∞.

We claim that {xn} is a Cauchy sequence.

Assume to the contrary that the sequence {xn} is not Cauchy.

Then there exists ε > 0, such that for any k ∈ N, there exist mk > nk ≥ k, such that

d (xmk
, xnk

) ≥ ε (2.1.13)

Furthermore, assume that for each k , mk is the smallest number greater than nk for which

2.1.13 holds.

Let ak = d(xmk
, xnk

). Since lim
n→∞

d(xn, xn+1) = lim
n→∞

an = 0, there exists k0 such that

d(xk, xk+1) ≤ ε for all k ≥ k0.

For such k, we have

ε ≤ d(xmk
, xnk

)

≤ d(xmk
, xmk−1) + d(xmk−1, xnk

)

≤ d(xmk
, xmk−1) + ε

≤ d(xk, xk−1) + ε.
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This proves lim
k→∞

d(xmk
, xnk

) = lim
k→∞

ak = ε.

On the other hand, we have

d(xmk
, xnk

) ≤ d(xmk
, xmk+1) + d(xmk+1, xnk+1) + d(xnk+1, xnk

)

≤ amk
+ ψ (d(xmk

, xnk
)) + ank

where amk
= d(xmk

, xmk+1)

≤ 2ak + ψ (d(xmk
, xnk

)) .

As k → ∞, we obtain

ε = lim
k→∞

d(xmk
, xnk

)

≤ lim
k→∞

(2ak + ψ (d(xmk
, xnk

)))

= ψ(ε).

Thus ε ≤ ψ(ε) which is a contradiction.

Hence {Tn(x)} = {xn} is a Cauchy sequence.

Since, {Tn(x)} is a Cauchy sequence and X is complete, lim
n→∞

Tn(x) = x ∈ X. Since T is

continuous, T (x) = x. Uniqueness of x follows from condition 2.1.12.

Remark 2.1.9 If we replace the condition ψ(t) < t by the condition ψ(t0) < t0 for at

least one value to t0, then theorem 2.1.8 may fail. In this case, T may have no fixed point

or else more than one fixed point.
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Chapter 3
Brouwer’s Fixed Point Theorem

Brouwer’s Fixed Point Theorem is a fundamental result in topology and mathematics, first

proven by the Dutch mathematician Luitzen Egbertus Jan Brouwer in 1910. This theorem

is a pivotal concept in the field of algebraic topology and plays a crucial role in various

areas of mathematics, economics, and the natural sciences. The theorem essentially states

that every continuous function from a closed, bounded interval in Euclidean space to itself

has at least one fixed point.

The core idea of Brouwer’s Fixed Point Theorem is the existence of stationary points in

continuous transformations. The Theorem, with its elegance and generality, has made a

profound impact on various areas of mathematics, and it continues to be a fundamental

result in the field of topology and mathematical analysis. It underscores the concept of

invariance in mathematical transformations and has inspired the development of many

other fixed-point theorems and related concepts in mathematics and its applications.

1. Key Assumptions

i. The set X must be closed and bounded. In one dimension, this could be an interval

[a, b], while in higher dimensions, it could be a closed ball or a closed and bounded

region.

ii. The function f defined on X must be continuous, meaning that small changes in the

input should lead to small changes in the output.

2. Intuitive Example

Consider a sheet of rubber with some ink dots on it. You can stretch and deform the
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rubber sheet, but you can’t tear it. Brouwer’s Fixed Point Theorem tells us that no matter

how you deform the sheet, at least one dot will end up exactly where it started, even

though the distances between the dots may have changed.

3. Significance

Brouwer’s Fixed Point Theorem has broad implications and applications in mathematics,

economics and the sciences. It forms the foundation of various mathematical theories

and algorithms, such as the Kakutani fixed-point theorem in game theory [9], [10] and

the topological degree theory. Additionally, it has applications in fields like game theory,

physics and computer science.

3.1 Results

Theorem 3.1.1 Brouwer’s fixed point theorem (for unit disc B2):

If f : B2 → B2 is a continuous map, then there exists a point x ∈ B2 such that f(x) = x.

Proof: We proceed by contradiction. Suppose that f(x) ̸= x for any x ∈ B2. Then

v(x) = f(x)− x gives a non-vanishing vector field (x, v(x)) on B2.

Therefore, there exists a point x of S1 the boundary of B2 where the vector field points

directly outward that is

v(x) = ax, where a > 0

or f(x)− x = ax, this implies f(x) = (1 + a)x, this gives a contradiction, since (1 + a)x

lies outside the unit disc B2.

Remark 3.1.2 Intermediate value theorem: Suppose f(x) is a continuous function

on [a, b] and l is a number that lies between f(a) and f(b), then there exists at least one c

such that c ∈ (a, b) and f(c) = l.

Theorem 3.1.3 Brouwer’s fixed point theorem for [0, 1]:

If f : [0, 1] → [0, 1] is a continuous function, then there is x ∈ [0, 1] such that f(x) = x i.e,

x is a fixed point of f(x).

Proof: We draw any graph of continuous function f(x) from [0, 1] → [0, 1], as shown in

figure 3.1
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Figure 3.1: figure

Define

g(x) = x− f(x), x ∈ [0, 1],

Clearly g is continuous.

Also

g(0) = 0− f(0) = −f(0) ≤ 0

g(1) = 1− f(1) ≥ 1− 1 = 0.

So, g(0) ≤ 0 whereas g(1) ≥ 0.

Therefore, by Intermediate value theorem, there exists x′ ∈ [0, 1] with g(x′) = 0 which gives

x′ − f(x′) = 0

=⇒ f(x′) = x′.

By definition, x′ is a fixed point of f(x).

Lemma: The set Sn−1 = {x ∈ Rn : ∥x∥ = 1} is not a retract of Dn.

Proof: The lemma can be easily proved by means of algebraic topology tools. Indeed, a

retraction r induces a homomorphism r⋆ : Hn−1(D
n) → Hn−1(S

n−1), where Hn−1 denotes

the (n− 1)-dimensional homology group.
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The natural injection j : Sn−1 → Dn induces in turn a homomorphism

j⋆ : Hn−1(S
n−1) → Hn−1(D

n),

and the composition r ◦ j is the identity map on Sn−1. Hence (r ◦ j)⋆ = r⋆ ◦ j⋆ is the

identity map on Hn−1(S
n−1).

But since Hn−1(D
n) = 0, j⋆ is the null map.

On the other hand, Hn−1(S
n−1) = Z if n ̸= 1 and H0(S

0) = Z ⊕ Z, leading to a

contradiction.

The analytic proof reported below is less evident and makes use of exterior forms. Moreover,

it provides a weaker result, namely, it shows that there exists no retraction of class C2

from unit disc Dn to Sn−1 in Rn. This will be however enough for our scopes.

The proof associate to a C2 function h : Dn → Dn the exterior from

wh = h1dh2 ∧ . . . ∧ dhn.

Theorem 3.1.4 (Brouwer) Let f : Dn → Dn be a continuous function. Then f has a

fixed point x̄ ∈ Dn.

Proof: Since we want to rely on analytic proof, let f : Dn → Dn be a class of C2. If f

has no fixed point, then

r(x) = t(x)f(x) + (1− t(x))x,

where

t(x) =
||x||2 − ⟨x, f(x)⟩ −

√
(||x||2 − ⟨x, f(x)⟩)2 + (1− ||x||2)||x− f(x)||2

||x− f(x)||2

is a retraction of class C2 from Dn to Sn−1, against the conclusion of lemma. Graphically,

r(x) is the intersection with Sn−1 of the line obtained extending the segment connecting

f(x) to x. Hence such an f has a fixed point. Finally, let f : Dn → Dn be continuous.

Appealing to the Stone-Weierstrass theorem, we find a sequence fj : D
n → Dn of functions

of class C2 converging uniformly to f on Dn. Denote x̄j the fixed point of fj . Then there

is x̄ ∈ Dn such that, up to a subsequence, x̄j → x̄. Therefore

||f(x̄)− x̄|| ≤ ||f(x̄)− f(x̄j)||+ ||f(x̄j)− fj(x̄j)||+ ||x̄j − x̄|| → 0

as j → ∞, which yields f(x̄) = x̄.
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3.1.1 Applications of Brouwer’s Theorem

A fundamental result that underpins a great deal of mathematics is the intermediate value

theorem (IVT). In the n-dimensional case, the IVT is the following:

Theorem 3.1.5 (Intermediate value theorem )

Suppose that f : Dn → Rn is continuous and suppose that when |x| = 1 (x ∈ δDn)

we have

⟨f(x), x⟩ > 0

where ⟨, ⟩ is an Euclidean inner product.

There exists an x ∈ Dn such that

f(x) = 0.

Proof: Let f : Dn → Rn be a continuous map that satisfies the above criteria. To prove

that there exists an x ∈ Dn such that f(x) = 0, we can construct a new map g : Dn → Dn

using f such that, when we apply the Brouwer’s fixed point theorem to g, the result

simplifies to f(x) = 0. Take g(x) = αf(x) + x, for some α > 0. Then by Brouwer’s fixed

point theorem, there exists some x ∈ Dn such that

g(x) = x

or αf(x) + x = x,

or αf(x) = 0,

implies f(x) = 0

So, all that needs to be established is that for any continuous map f : Dn → Rn with the

condition that x ∈ δDn.

⇒ ⟨f(x), x⟩ > 0, there exists an α > 0 such that

g(x) = αf(x) + x

is a continuous function g : Dn → Dn.

To prove this, suppose that such a function g does not exist. We can write any α > 0

as α = 1
m , m ∈ R. Then for all m where g(x) = 1

mf(x) + x, there is some xm ∈ Dn such

that |g(xm)| > 1 (xm /∈ Dn).
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As the choice of α is arbitrary, we have

|0f(x0) + x0| ≥ 1

⇒ |x0| ≥ 1.

But we know that x0 ∈ Dn, so we deduce that |x0| = 1.

By assumption and the continuity of f ,

⟨f(x), x⟩ > 0

⇒ ⟨f(x0), x0⟩ > 0.

Again we deduce that there is some δ > 0 and an M ∈ N, such that m ≥M, we have that

⟨f(xm), xm⟩ ≤ δ > 0

Now ∣∣∣∣ 1mf(xm) + xm

∣∣∣∣2
=

1

m2
|f(xm)|2 + 2

m
|(xm)f(xm)|2 + |xm|2

=
1

m2
|f(xm)|2 + 2

m
⟨f(xm), xm⟩2 + |xm|2

By definition of supremum, and as |xm| ≤ 1,∣∣∣∣ 1mf(xm) + xm

∣∣∣∣2 ≤ 1

m2
||f ||2∞ +

2

m
|(xm)f(xm)|2 + |xm|2

≤ 1

m2
||f ||2∞ +

2

m
|(xm)f(xm)|2 + 1

When m ≥M . We can now set up a contradiction.

Suppose that m > ||f ||2∞
δ .

Then
δ

m
>

||f ||2∞
m2

,

and we would have that∣∣∣∣ 1mf(xm) + xm

∣∣∣∣2 < δ

m
− 2δ

m
+ 1 < 1− δ

m
,
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now as m, δ > 0, this implies
∣∣ 1
mf(xm) + xm

∣∣2 < 1, Which is a contradiction.

Thus we can conclude that for any continuous f : Dn → Rn, there exists an α > 0

such that g(x) = αf(x) + x is a continuous function g : Dn → Dn. This concludes the

proof.

Remark 3.1.6 The intermediate value theorem (IVT) and the Brouwers fixed point

theorem (BFPT) are actually equivalent theorems. We have already seen that Brouwers

fixed point theorem ⇒ intermediate value theorem.

Now let us prove the converse

Proposition: IVT ⇒ BFPT.

Proof: Suppose f : Dn → Dn is continuous, then by the BFPT, there is some

x0 ∈ Dn such that f(x0) = x0. Now set g(x) = f(x) + x,

we know that g : Dn → Rn. To check the two criteria of IVT holds, consider that

⟨g(x), x⟩ = ⟨f(x) + x, x⟩

= |xf(x)| − |x|2

by the Cauchy-Schwarz inequality

⟨g(x), x⟩ ≤ |f(x)||x| − |x|2.

As |f(x)| ≤ 1, so

⇒ ⟨g(x), x⟩ ≤ |x| − |x|2

under the condition that |x| = 1, it holds that ⟨g(x), x⟩ ≤ 0.

Note that

g(x0) = f(x0)− x0

= x0 − x0 = 0.

Hence, the IVT holds for g.

Topological Invariance of Domain and dimension

Theorem 3.1.7 (Invariance of Domain):
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Let U be an open subset of Rn and let f : U → Rn be continuous, injective function.

Then f(U) is open.

Proof: We wish to show that every point f(x) ∈ f(U) is an interior point of f(U).

Then, by definition f(U) will be open. Consider that, for all x ∈ U , there is some r > 0

such that Br(x) ⊆ U . But x ∈ Br(x) ⊆ U

⇒ f(x) ∈ f(Br(x)) ⊆ f(U)

by continuity of f .

So, to show that f(U) is an open subset of Rn, it suffices to show that f(x) is an

interior point of f(Br(x)).

Further, by rescaling and translation, it suffices to show that, if f : Dn → Rn is

continuous and injective, then f(0) is an interior point of f(Dn).

As Dn is compact, it follows that f : Dn → f(Dn) is a homeomorphism. We define

an inverse g : f(Dn) → Dn.

By Tietze Extension Theorem, we extend g to g : Rn → Rn. This function has a

zero, that is of course, f(0). We wish to show that any function sufficiently close to g has

a zero. This will prove the above.

More formally, let g̃ : f(Dn) → Rn be continuous, with condition that

|g̃(y)− g(y)| ≤ 1,

for all y ∈ f(Dn). Then g̃ has a zero in f(Dn). We define a function

h(x) : Dn → Dn,

such that

h(x) = x− g̃(f(x)).

By the Brouwer’s fixed point theorem, it follows that there exists x ∈ Dn such that

h(x) = x

implies x− g̃(f(x)) = x
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or g̃(f(x)) = 0.

As g̃ : f(Dn) → Rn is continuous, so it follows that g̃ has a zero, namlely f(x).

Suppose that f(0) is not an interior point of f(Dn). Then f(0) must lie on the

boundary and so a function has a zero on the boundary. We wish to construct some

function g̃ from g which will contradict the fact that any function sufficiently close to g

has a zero. By the definition of continuity, there exists a δ > 0 such that for all y ∈ Rn,

|y − f(0)| < 2δ

⇒ |g(y)− g(f(0))| < 1

4
.

But of course we already have that g(f(0)) = 0,

So,

|y − f(0)| ⇒ |g(y)| < 1

4
.

By assumption, there exists α /∈ f(Dn) such that |α− f(0)| < δ.

Assume α = 0. If not, we can translate it so that α gets moved to the origin.

So we have that 0 /∈ f(Dn), |f(0)| < δ, and by the triangle inequality |y| < δ

⇒ |y − f(0)| < δ.

Define

L = L1 ∪ L2 = (f(Dn) ∩ {|y| ≥ δ}) ∪ {y ∈ Rn − f(Dn) : |y| = δ.} (3.1.1)

Notice that L2 is the boundary of the ball of radius δ centered on the origin and L1 is the

part of f(Dn) that lies outside that ball. By the compactness of f(Dn), L1 and L2 are

also compact. Further, there are also no zeros on L1.

We define a continuous function

ϕ : f(Dn) → L

by

ϕ(y) = max

{
δ

|y|
, 1

}
y.

This is well defined and continuous. When y ∈ L1, then ϕ(y) = y. When y ∈ f(Dn) with

|y| < δ,

ϕ(y) =
δy

|y|
∈ L2.
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Note that these are the boundary points of the ball. Now take

g̃ = g ◦ ϕ : f(Dn) → Rn.

When y ∈ L1, g̃(y) = g(y) ̸= 0 the only place for a zero then may be when y ∈ L2.

To prove that there is no zero when y ∈ L2, if necessary we can pertrub g̃ to be a better

suited function, by means of the Weierstrass Approximation Theorem or perhaps by a

more direct topological approach. This ensures that the function does not vanish in L2.

After establishing this, we can conclude the proof by showing that g̃ is sufficiently

close to g,

1. if |y| ≥ δ, then ϕ(y) = y, and |g(y)− g̃(y)| = |g(y)− goϕ(y)|

= |g(y)− g(y)|

= 0 < 1.

2. if |y| ≤ δ, then we have that |g(y)| < 1
4 and |g̃(y)| < 1

4 so, |g(y)−g̃(y)| < 1
4+

1
4 = 1

2 < 1.

In both the cases |g(y)− g̃(y)| < 1, g̃ should have a zero in f(Dn). But we have proven it

doesn’t, this is a contradiction and our claim holds.

Theorem 3.1.8 ( Invariance of Dimension ). If U is an open subset of Rm and V an

open subset of Rn, and U is an homeomorphic to V , then m = n.

Proof: To prove invariance of dimension, We will use invariance of domain. Suppose there

exists continuous, injective map f : U → Rn, where U is an open subset of Rm.

We will first prove that it must be that m ≤ n. We will proceed by contradiction.

Suppose that m > n, then take some linear injection P : Rn → Rm. The image, P (Rn) is

a proper subspace of Rm. Then Pf : U → Rm is linear injection whose image is contained

within a proper subspace of Rm.

Lemma: Every proper subspace of Rm has an empty interior.

Proof: Let S ⊂ Rm be a proper subspace. Suppose S has a non-empty interior. Let

x ∈ S, then it contains some ball Br(x). Take some y ∈ Rm, let

z = x+
r

2||y||
y
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then z ∈ Br(x) ⊂ S this gives

y = (z − x)
2||y||
r

,

⇒ y ∈ S.

As as y ∈ Rm is arbitrary, it follows that S = Rm. This is a contradiction, as we assumed

S is a proper subspace of Rm.

By the theorem(3.1.7), this is a contradiction, as Pf(U) is assumed to be an open set.

Remark 3.1.9 In topology, the Tietze extension theorem (also known as Tietze-Ursohn-

Brouwers extension theorem or Uryshon-Brouwer lemma) [3] states that if X is a normal

space and f : A → R is a continuous map from a closed subset A of X into the real

numbers R carrying the standard topology, then there exists a continuous extension of f

to X ; that is, there exists a map

F : X → R

continuous on all of X with F (a) = f(a) for all a ∈ A. Moreover, F may be choosen such

that

sup{|f(a)| : a ∈ A} = sup{|F (x)| : x ∈ X}

that is, if f is bounded then F may be choosen, to be bounded (with the same bound as

f).

Remark 3.1.10 (Weierstrass Approximation theorem). Let I be closed and bounded

interval. Suppose f : I → R is a continuous function, then for each ε > 0, there exists a

polynomial function Pε : I → R such that

|f(x)− Pε(x)| < ε,

for all x ∈ I or equivalently

sup{|f(x)− Pε(x)| : x ∈ I} < ε.

Theorem 3.1.11 Let A be a 3× 3 matrix of positive real numbers. Then A has a positive

real eigen value.

Proof: Let T : R3 → R3 be a linear transformation, whose matrix relative to the standard

basis of R3 is A.

Let B = S2 ∩ {(v1, v2, v3) ∈ R3|vi ≥ 0, ∀ i = 1, 2, 3}
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Clearly, B is homeomorphic to a unit disc B2. So the fixed point theorem holds for

continuous maps of B into itself. Now if v = (v1, v2, v3) ∈ B, then all the components of v

are non-negative and atleast one is positive. Since A has all positive entries, therefore T (v)

is a vector whose all components are positive. Now define ϕ : B → B by

ϕ : y → y

||y||
.

Clearly ϕ is a continuous map and hence there exists a point x0 ∈ B, such that

ϕ(x0) = x0.

This gives

x0 =
T (x0)

||T (x0)||
or

T (x0) = ||T (x0)||x0.

Hence T has a positive eigen value namely ||T (x0)||.

Example 3.1.12 The theorem has some several real world illustrations. Here are some
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examples:

1. Given two similar maps of a country of different sizes resting on top of each other,

there always exists a point that represents the same place on both maps.

2. Consider a map of a country, if that map is placed anywhere in that country, there

will always be a point on the map that represents the exact point in that country.

3. Recently [11] provide an alternative proof using Brouwer’s fixed point theorem of

Browder’s theorem, which states that for every continuous mapping f : [0, 1]×X → X,

where X is a nonempty, compact, and convex set in a Euclidean space, the set of

fixed points of f , namely the set {(t, x) ∈ [0, 1]×X : f(t, x) = x}, has a connected

component whose projection onto the first coordinate is [0, 1].
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gaciones Matemáticas, 10(1):63–78, 2002.

[4] David William Boyd and James SW Wong. On nonlinear contractions. Proceedings of

the American Mathematical Society, 20(2):458–464, 1969.
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